Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Optical amplifier with world record low noise

22.06.2011
Gothenburg, Sweden: Researchers at Chalmers have demonstrated an optical amplifier which can amplify light with extremely low noise.

The breakthrough enables a reach increase for optical fiber signals from e.g. 1000 km to 4000 km, paving way for increasing the capacity of data communications. The new amplifier could lead to better Internet traffic and laser radar technology, and promote any applications where detection of very weak levels of light is essential, such as free-space communication.

Today´s flow of information demands increasing capacity. Optical amplifiers are crucial enablers of data communication, with the mission to increase data signals without first converting them to electrical signals. Not only the speed and capacity require improvements, but it has become increasingly important to maintain a high signal-to-noise ratio of the signal being transmitted.

The researchers at Chalmers University of Technology have, by using a so-called phase-sensitive fiber-optic parametric amplifier, PSA, reduced the noise figure to 1 dB. In traditional erbium-doped fiber amplifiers the noise figure is 3 dB at best, resulting in loss of signal integrity. 1 dB is the lowest noise ever reported in any kind of amplifier with reasonably large signal gain. This represents a breakthrough also because it is implemented in a practical way, making it potentially very attractive in various applications – most notably in high capacity optical communication systems.

“This is the ultimate optical amplifier. It enables connecting cities, countries and continents more efficiently by placing the amplification hubs at much greater intervals. The signal can also be modulated more effectively. In addition, the amplifier is compatible with any modulation format, with traditional laser transmitters and can be very broadband, making it compatible with many lasers at different wavelengths”, says Professor Peter Andrekson, who has developed the low-noise amplifier together with his research group in fiber optics.

The group has taken advantage of the fact that the refractive index of glass is not constant, but dependent on light intensity in the fiber. The new amplifier shows experimentally to have 1 dB noise level, with a theoretical minimum of 0 dB, i.e. no noise being added in the amplification process. The next step for the Chalmers researchers are towards applications.

“The entire optical telecom industry is our market. But the technology is generic, and scalable to other wavelengths like visible or infrared light, which makes it attractive in areas such as measurements, spectroscopy, laser radar technology and any applications where detection of very weak levels of light is essential”, says Peter Andrekson.

The research is performed at Chalmers University of Technology. It is funded by the European project PHASORS and the Swedish Research Council (VR). Participating partners in the EU project includes University of Southampton, University College Cork, University of Athens, Eblana, OFS, OneFive Photonics and EXFO Sweden AB. The results were published in Nature Photonics.

The article:
Z. Tong, C. Lundström, P.A. Andrekson, C.J. McKinstrie, M. Karlsson, D.J. Blessing, E. Tipsuwannakul, B.J. Puttnam, H. Toda, and L. Grüner-Nielsen, Towards ultrasensitive optical links enabled by low-noise phase-sensitive amplifiers, Nature Photonics, DOI: 10.1038/nphoton.2011.79
For further information, please contact:
Prof. Peter Andrekson, +46-31-772 16 06, peter.andrekson@chalmers.se
or Christian Borg, Media Relations Manager, Chalmers University of Technology
+46-31-772 3395, christian.borg@chalmers.se

Christian Borg | idw
Further information:
http://www.vr.se
http://www.nature.com/nphoton/journal/vaop/ncurrent/full/nphoton.2011.79.
http://www.chalmers.se/en/research/professors/Pages/descriptions/peter-andrekson-photonics.aspx

More articles from Information Technology:

nachricht Information integration and artificial intelligence for better diagnosis and therapy decisions
24.05.2017 | Fraunhofer MEVIS - Institut für Bildgestützte Medizin

nachricht World's thinnest hologram paves path to new 3-D world
18.05.2017 | RMIT University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>