Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Online tools help students search for meaning

11.11.2008
With universities storing ever more teaching resources online, how do students and tutors find what they need? European researchers have devised novel ways to classify and locate teaching materials – and in eight different languages.

University students no longer learn from lectures and books alone. Thanks to the internet, they now have access to a huge range of supporting material, such as lecture notes, assignments, articles, and so on. To organise this material effectively, most universities have invested in a ‘learning management system’ (LMS) to archive and present documents online in a systematic way.

But as the volume of material grows, both students and tutors have the problem of locating the information they need.

“In general it can be hard to find what you are looking for,” says Dr Paola Monachesi of the Institute of Linguistics at Utrecht University. “The normal way to search the LMS is by a full text search. That’s what you do in Google, you just type a word and get a list of results.”

Unfortunately, such searches ignore the relevance and suitability of the ‘learning objects’ they identify. An EU-funded project called LT4eL (Language Technology for eLearning), involving universities in ten European countries, has devised new ways to search by meaning rather than by text.

Extracting keywords

One approach is to search by metadata – keywords and other labels that tell a potential user much more about a document – but metadata has to be entered manually by the author and the task is often neglected.

“We thought, can we develop a system where keywords are assigned automatically or semi-automatically?” says Monachesi, who coordinates LT4eL.

The project has created a ‘keyword extractor’ that analyses each document in the LMS archive and proposes a list of keywords that the author can accept, reject or modify. The prototype focuses on material in computer science and e-learning and has been designed to work with documents in Bulgarian, Czech, Dutch, English, German, Polish, Portuguese and Romanian.

Trials show that it works faster and more consistently than manual annotation. A related tool even extracts definitions from the material to build a glossary of key terms.

Although online dictionaries are already available, they do have some shortcomings. “Very often the words are ambiguous so you don’t really know the proper definition in the context of your learning object,” Monachesi explains. “’Key’, for example, might mean the key of a keyboard or a key to open a door.” The LT4eL tool ensures that the offered definitions make sense in the context of the course material.

Multiple languages

A second, potentially very powerful approach, allows users to search for information by concept. The ‘semantic search’ tool organises keywords and definitions in a hierarchy according to their meaning – an ontology – revealing the relationship between them. For example, a student searching for information about HTML, the language used to mark up web pages, would also be pointed to material about XML, as both are used for similar purposes.

But the real richness of the LT4eL system is that the resources can be cross-referenced between several different languages.

“Since we classify documents through topics we can also search in different languages at the same time,” Monachesi points out. “I had Polish students who could speak English, the course was in English, but they preferred to read documents in Polish. With such a system, I could search in English or Dutch but get Polish documents. So my students could get material in their own language even though I don’t know Polish.”

The system has obvious benefits for students on exchange programmes and those studying a field where much of the material is not available in their native tongue. Because of the choice of languages, the project should help develop ties between ICT research communities in the new Member States and the rest of the EU.

Although the project has been designed with higher education in mind, the tools have been tested with schools in Romania and should also be useful for industrial training.

Tagging the future?

LT4eL was supported by the EU’s Sixth Framework Programme for Research, and the Seventh Framework Programme is funding its successor, LTfLL (Language Technology for Lifelong Learning) which will be further developing the semantic search.

“We see a lot of potential in the semantic search but we noticed that students don’t use it in the way they could,” says Monachesi. “I think this is because it’s new and different from what they are used to on Google, for example.”

So, among other things, the new project will look at the ‘tagging’ system popular on social networking websites like Flickr and YouTube to see if it could be adapted to make the semantic search more user-friendly.

“Maybe we can find a semantic representation more lightweight than our very structured ontology that may be difficult for people to understand.”

For the purpose of the project the LT4eL tools have been integrated into the ILIAS learning management system but Monachesi stresses that the tools are open source and are freely available from the project website and SourceForge.

“This gives the widest possible distribution and dissemination – anybody could use them – but the licence would also allow for commercialisation.”

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/90187

More articles from Information Technology:

nachricht Modeling the brain with 'Lego bricks'
19.06.2017 | University of Luxembourg

nachricht Strain measurement – faster and more versatile than ever
14.06.2017 | Fraunhofer-Gesellschaft

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Hubble captures massive dead disk galaxy that challenges theories of galaxy evolution

22.06.2017 | Physics and Astronomy

New femto-camera with quadrillion fractions of a second resolution

22.06.2017 | Physics and Astronomy

Rice U. chemists create 3-D printed graphene foam

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>