Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Northeastern Wins Multi-Million Dollar Grant to Develop Critical Infrastructure Sensing Technology

12.01.2009
Northeastern University has been awarded a $9 million federal research grant to develop new multi-sensor technology systems for cars and trucks that will allow for real-time assessment of road and bridge infrastructure across the country.

Northeastern will lead the five-year VOTERS (Versatile Onboard Traffic Embedded Roaming Sensors) project along with a range of government, industry, and academic partners.

“This multi-million dollar federal grant is an investment in one of Northeastern’s greatest strengths: the discovery and development of knowledge that benefits society,” said Northeastern President Joseph E. Aoun. “We are pleased to take the lead on this important project, which will do a great deal toward improving our nation’s infrastructure and advancing public safety.”

The need to restore and maintain urban infrastructure is identified by the National Academy of Engineering as an engineering Grand Challenge for the 21st century. The well publicized American Society of Civil Engineering (ASCE) 2005 Report Card gave the nation’s infrastructure a grade of D, estimating that a $1.6 trillion investment was required to address basic needed repairs.

Ming Wang, Ph.D., and Sara Wadia-Fascetti, Ph.D., both professors of civil engineering at Northeastern, will co-direct the project. The team, assembled from university, industry and government partners, will equip vehicles, such as city buses, with innovative multi-sensor technology systems that monitor surface conditions while the vehicle is in motion. The sensors will utilize acoustics and radar to monitor the roads and bridges under real driving conditions, looking for potholes and cracks in the concrete and other abnormalities that are in need of repair.

This new technology will eliminate the need for current inspection methods that involve hazardous and congestion-prone highway work zones. The commercialization of several new inventions is envisioned as the end-product of funding.

“The goal of this project is to create a cost-effective and safe way to monitor our civil infrastructure under normal driving conditions,” said Dr. Wang, principal investigator on the project. “This sensing technology will create a way to detect problems, both on the surface and subsurface, so that problems can be fixed more efficiently.”

Computers installed in the vehicles will control the sensors and a GPS system will pinpoint the collected data to very precise locations. Constant streams of data will be processed and reported back to base stations using a cellular phone system, which will then be analyzed so that timely repairs can be made in vulnerable areas.

"New technologies combining civil, electrical and computer engineerings are essential to solve the crisis in the nation's infrastructure. Northeastern's innovative research leadership through Professors Wang, Wadia-Fascetti, and their colleagues will serve the nation well," said David Luzzi, Dean of Northeastern’s College of Engineering.

Northeastern will collaborate with various government, academic and industry partners on this project, including the Massachusetts Highway Department, Analogic Corporation, Infrasense Inc., and researchers at Boston University, in addition to the primary Joint Venture partners.

VOTERS is part of the NIST’s Technology Innovation Program, which was recently established to support innovative and high-risk, high-reward research in areas with a critical need.

Jenny Eriksen | Newswise Science News
Further information:
http://www.neu.edu

More articles from Information Technology:

nachricht Terahertz spectroscopy goes nano
20.10.2017 | Brown University

nachricht New software speeds origami structure designs
12.10.2017 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>