Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

No-wait data centers

17.07.2014

New system could reduce data-transmission delays across server farms by 99.6 percent

Big websites usually maintain their own "data centers," banks of tens or even hundreds of thousands of servers, all passing data back and forth to field users' requests. Like any big, decentralized network, data centers are prone to congestion:

Packets of data arriving at the same router at the same time are put in a queue, and if the queues get too long, packets can be delayed.

At the annual conference of the ACM Special Interest Group on Data Communication, in August, MIT researchers will present a new network-management system that, in experiments, reduced the average queue length of routers in a Facebook data center by 99.6 percent — virtually doing away with queues.

When network traffic was heavy, the average latency — the delay between the request for an item of information and its arrival — shrank nearly as much, from 3.56 microseconds to 0.23 microseconds.

Like the Internet, most data centers use decentralized communication protocols: Each node in the network decides, based on its own limited observations, how rapidly to send data and which adjacent node to send it to. Decentralized protocols have the advantage of an ability to handle communication over large networks with little administrative oversight.

The MIT system, dubbed Fastpass, instead relies on a central server called an "arbiter" to decide which nodes in the network may send data to which others during which periods of time. "It's not obvious that this is a good idea," says Hari Balakrishnan, the Fujitsu Professor in Electrical Engineering and Computer Science and one of the paper's coauthors.

With Fastpass, a node that wishes to transmit data first issues a request to the arbiter and receives a routing assignment in return. "If you have to pay these maybe 40 microseconds to go to the arbiter, can you really gain much from the whole scheme?" says Jonathan Perry, a graduate student in electrical engineering and computer science (EECS) and another of the paper's authors. "Surprisingly, you can."

Division of labor

Balakrishnan and Perry are joined on the paper by Amy Ousterhout, another graduate student in EECS; Devavrat Shah, the Jamieson Associate Professor of Electrical Engineering and Computer Science; and Hans Fugal of Facebook.

The researchers' experiments indicate that an arbiter with eight cores, or processing units, can keep up with a network transmitting 2.2 terabits of data per second. That's the equivalent of a 2,000-server data center with gigabit-per-second connections transmitting at full bore all the time.

"This paper is not intended to show that you can build this in the world's largest data centers today," Balakrishnan says. "But the question as to whether a more scalable centralized system can be built, we think the answer is yes."

Moreover, "the fact that it's two terabits per second on an eight-core machine is remarkable," Balakrishnan says. "That could have been 200 gigabits per second without the cleverness of the engineering."

The key to Fastpass's efficiency is a technique for splitting up the task of assigning transmission times so that it can be performed in parallel on separate cores. The problem, Balakrishnan says, is one of matching source and destination servers for each time slot.

"If you were asked to parallelize the problem of constructing these matchings," he says, "you would normally try to divide the source-destination pairs into different groups and put this group on one core, this group on another core, and come up with these iterative rounds. This system doesn't do any of that."

Instead, Fastpass assigns each core its own time slot, and the core with the first slot scrolls through the complete list of pending transmission requests. Each time it comes across a pair of servers, neither of which has received an assignment, it schedules them for its slot. All other requests involving either the source or the destination are simply passed on to the next core, which repeats the process with the next time slot. Each core thus receives a slightly attenuated version of the list the previous core analyzed.

Bottom line

Today, to avoid latencies in their networks, most data center operators simply sink more money into them. Fastpass "would reduce the administrative cost and equipment costs and pain and suffering to provide good service to the users," Balakrishnan says. "That allows you to satisfy many more users with the money you would have spent otherwise."

Networks are typically evaluated according to two measures: latency, or the time a single packet of data takes to traverse the network, and throughput, or the total amount of data that can pass through the network in a given interval.

###

Written by Larry Hardesty, MIT News Office

Additional background

Fastpass: http://fastpass.mit.edu 

Andrew Carleen | Eurek Alert!
Further information:
http://www.mit.edu

Further reports about: Data Centers Facebook MIT electrical engineering microseconds networks

More articles from Information Technology:

nachricht New RFID transponder with large memory and a mobile handheld reader
31.03.2015 | Siemens AG

nachricht UAB Rolls Out New Technology to Help Users Combat Mobile Malware Attacks
31.03.2015 | University of Alabama at Birmingham

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Experiment Provides the Best Look Yet at 'Warm Dense Matter' at Cores of Giant Planets

In an experiment at the Department of Energy's SLAC National Accelerator Laboratory, scientists precisely measured the temperature and structure of aluminum as...

Im Focus: Energy-autonomous and wireless monitoring protects marine gearboxes

The IPH presents a solution at HANNOVER MESSE 2015 to make ship traffic more reliable while decreasing the maintenance costs at the same time. In cooperation with project partners, the research institute from Hannover, Germany, has developed a sensor system which continuously monitors the condition of the marine gearbox, thus preventing breakdowns. Special feature: the monitoring system works wirelessly and energy-autonomously. The required electrical power is generated where it is needed – directly at the sensor.

As well as cars need to be certified regularly (in Germany by the TÜV – Technical Inspection Association), ships need to be inspected – if the powertrain stops...

Im Focus: 3-D satellite, GPS earthquake maps isolate impacts in real time

Method produced by UI researcher could improve reaction time to deadly, expensive quakes

When an earthquake hits, the faster first responders can get to an impacted area, the more likely infrastructure--and lives--can be saved.

Im Focus: Atlantic Ocean overturning found to slow down already today

The Atlantic overturning is one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards. Also known as the Gulf Stream system, it is responsible for the mild climate in northwestern Europe. 

Scientists now found evidence for a slowdown of the overturning – multiple lines of observation suggest that in recent decades, the current system has been...

Im Focus: Robot inspects concrete garage floors and bridge roadways for damage

Because they are regularly subjected to heavy vehicle traffic, emissions, moisture and salt, above- and underground parking garages, as well as bridges, frequently experience large areas of corrosion. Most inspection systems to date have only been capable of inspecting smaller surface areas.

From April 13 to April 17 at the Hannover Messe (hall 2, exhibit booth C16), engineers from the Fraunhofer Institute for Nondestructive Testing IZFP will be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference On Regenerative Medicine 2015: Registration And Abstract Submission Now Open

25.03.2015 | Event News

University presidents from all over the world meet in Hamburg

19.03.2015 | Event News

10. CeBiTec Symposium zum Big Data-Problem

17.03.2015 | Event News

 
Latest News

Biology in a twist -- deciphering the origins of cell behavior

31.03.2015 | Life Sciences

Wrapping carbon nanotubes in polymers enhances their performance

31.03.2015 | Materials Sciences

Research Links Two Millennia of Cyclones, Floods, El Niño

31.03.2015 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>