Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


No-wait data centers


New system could reduce data-transmission delays across server farms by 99.6 percent

Big websites usually maintain their own "data centers," banks of tens or even hundreds of thousands of servers, all passing data back and forth to field users' requests. Like any big, decentralized network, data centers are prone to congestion:

Packets of data arriving at the same router at the same time are put in a queue, and if the queues get too long, packets can be delayed.

At the annual conference of the ACM Special Interest Group on Data Communication, in August, MIT researchers will present a new network-management system that, in experiments, reduced the average queue length of routers in a Facebook data center by 99.6 percent — virtually doing away with queues.

When network traffic was heavy, the average latency — the delay between the request for an item of information and its arrival — shrank nearly as much, from 3.56 microseconds to 0.23 microseconds.

Like the Internet, most data centers use decentralized communication protocols: Each node in the network decides, based on its own limited observations, how rapidly to send data and which adjacent node to send it to. Decentralized protocols have the advantage of an ability to handle communication over large networks with little administrative oversight.

The MIT system, dubbed Fastpass, instead relies on a central server called an "arbiter" to decide which nodes in the network may send data to which others during which periods of time. "It's not obvious that this is a good idea," says Hari Balakrishnan, the Fujitsu Professor in Electrical Engineering and Computer Science and one of the paper's coauthors.

With Fastpass, a node that wishes to transmit data first issues a request to the arbiter and receives a routing assignment in return. "If you have to pay these maybe 40 microseconds to go to the arbiter, can you really gain much from the whole scheme?" says Jonathan Perry, a graduate student in electrical engineering and computer science (EECS) and another of the paper's authors. "Surprisingly, you can."

Division of labor

Balakrishnan and Perry are joined on the paper by Amy Ousterhout, another graduate student in EECS; Devavrat Shah, the Jamieson Associate Professor of Electrical Engineering and Computer Science; and Hans Fugal of Facebook.

The researchers' experiments indicate that an arbiter with eight cores, or processing units, can keep up with a network transmitting 2.2 terabits of data per second. That's the equivalent of a 2,000-server data center with gigabit-per-second connections transmitting at full bore all the time.

"This paper is not intended to show that you can build this in the world's largest data centers today," Balakrishnan says. "But the question as to whether a more scalable centralized system can be built, we think the answer is yes."

Moreover, "the fact that it's two terabits per second on an eight-core machine is remarkable," Balakrishnan says. "That could have been 200 gigabits per second without the cleverness of the engineering."

The key to Fastpass's efficiency is a technique for splitting up the task of assigning transmission times so that it can be performed in parallel on separate cores. The problem, Balakrishnan says, is one of matching source and destination servers for each time slot.

"If you were asked to parallelize the problem of constructing these matchings," he says, "you would normally try to divide the source-destination pairs into different groups and put this group on one core, this group on another core, and come up with these iterative rounds. This system doesn't do any of that."

Instead, Fastpass assigns each core its own time slot, and the core with the first slot scrolls through the complete list of pending transmission requests. Each time it comes across a pair of servers, neither of which has received an assignment, it schedules them for its slot. All other requests involving either the source or the destination are simply passed on to the next core, which repeats the process with the next time slot. Each core thus receives a slightly attenuated version of the list the previous core analyzed.

Bottom line

Today, to avoid latencies in their networks, most data center operators simply sink more money into them. Fastpass "would reduce the administrative cost and equipment costs and pain and suffering to provide good service to the users," Balakrishnan says. "That allows you to satisfy many more users with the money you would have spent otherwise."

Networks are typically evaluated according to two measures: latency, or the time a single packet of data takes to traverse the network, and throughput, or the total amount of data that can pass through the network in a given interval.


Written by Larry Hardesty, MIT News Office

Additional background


Andrew Carleen | Eurek Alert!
Further information:

Further reports about: Data Centers Facebook MIT electrical engineering microseconds networks

More articles from Information Technology:

nachricht Fraunhofer FIT joins Facebook's Telecom Infra Project
25.10.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Stanford researchers create new special-purpose computer that may someday save us billions
21.10.2016 | Stanford University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>