Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIST develops powerful method of suppressing errors in many types of quantum computers

24.04.2009
Researchers at the National Institute of Standards and Technology (NIST) have demonstrated a technique for efficiently suppressing errors in quantum computers. The advance could eventually make it much easier to build useful versions of these potentially powerful but highly fragile machines, which theoretically could solve important problems that are intractable using today's computers.

The new error-suppression method, described in the April 23 issue of Nature,* was demonstrated using an array of about 1,000 ultracold beryllium ions (electrically charged atoms) trapped by electric and magnetic fields.

Each ion can act as a quantum bit (qubit) for storing information in a quantum computer. These ions form neatly ordered crystals, similar to arrays of qubits being fabricated by other researchers using semiconducting and superconducting circuitry. Arrays like this potentially could be used as multi-bit quantum memories.

The new NIST technique counteracts a major threat to the reliability of quantum memories: the potential for small disturbances, such as stray electric or magnetic fields, to create random errors in the qubits. The NIST team applied customized sequences of microwave pulses to reverse the accumulation of such random errors in all qubits simultaneously.

"Simulations show that under appropriate conditions this method can reduce the error rate in quantum computing systems up to a hundred times more than comparable techniques. Our measurement results validate these predictions," says Hermann Uys, a NIST guest researcher who is a lead author of the paper. Uys is visiting from the Council for Scientific and Industrial Research, Pretoria, South Africa.

Co-lead author Michael J. Biercuk, a NIST post-doc, notes that correcting qubit errors after they occur will require extraordinary resources, whereas early suppression of errors is far more efficient, and improves the performance of subsequent error correction. The new NIST error-suppression method could enable quantum computers of various designs to achieve error rates far below the so-called fault-tolerance threshold of about 1 error in 10,000 computational operations (0.01 percent), Biercuk says. If error rates can be reduced below this level, building a useful quantum computer becomes considerably more realistic.

Quantum computers, by relying on the unusual properties of the atomic-scale world to store and process data, could someday break commonly used encryption codes, perform faster searches of enormous databases, and determine the most efficient schedules for everything from airlines to traveling salespeople. They could also simulate complex quantum systems that are too difficult to study using today's computers or through direct experiments. But first, practical quantum computers need to be built, and their components need to be reliable.

Unlike today's computers, which use transistors that are switched on or off to represent bit values of 1 or 0, quantum computers would manipulate the properties of qubits to represent 1 or 0 or-thanks to the peculiarities of the quantum world-both at the same time. But these "quantum states" are so delicate that qubit values would be highly susceptible to errors caused by the slightest electronic noise.

Under ideal conditions, and in the absence of deliberate manipulations, ion qubit states evolve in a predictable way, similar to a spinning top tipped from its vertical axis. Environmental interference can lead to a buildup of error, but the new NIST pulse method can reverse this accumulation, thus preserving the original state.

The NIST method is an adaptation of "spin echo" techniques used for decades to suppress errors in nuclear magnetic resonance (the basis of magnetic resonance imaging). In spin echo, evenly spaced control pulses will nearly reverse the buildup of error, as long as fluctuations are slow relative to the time between pulses.

Recently, scientists at another institution published a theory of how to modify pulse timing in order to improve noise suppression. The NIST team conducted the first experimental demonstration of this theory, and then extended these ideas by generating novel pulse sequences tailored to the ambient noise environment. These novel sequences can be found quickly through an experimental feedback technique, and were shown to significantly outperform other sequences without the need for any knowledge of the noise characteristics. The researchers tested these pulse sequences under realistic noise conditions simulating those appropriate for different qubit technologies, making their results broadly applicable.

The research was conducted in the laboratory of NIST physicist John J. Bollinger, the project lead, and funded in part by the Intelligence Advanced Research Projects Agency.

* M.J. Biercuk, H. Uys, A.P. VanDevender, N. Shiga, W.M. Itano and J.J. Bollinger. Optimized Dynamical Decoupling in a Model Quantum Memory. Nature. April 23.

Laura Ost | EurekAlert!
Further information:
http://www.nist.gov

More articles from Information Technology:

nachricht Defining the backbone of future mobile internet access
21.07.2017 | IHP - Leibniz-Institut für innovative Mikroelektronik

nachricht Researchers create new technique for manipulating polarization of terahertz radiation
20.07.2017 | Brown University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>