Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NIST develops powerful method of suppressing errors in many types of quantum computers

Researchers at the National Institute of Standards and Technology (NIST) have demonstrated a technique for efficiently suppressing errors in quantum computers. The advance could eventually make it much easier to build useful versions of these potentially powerful but highly fragile machines, which theoretically could solve important problems that are intractable using today's computers.

The new error-suppression method, described in the April 23 issue of Nature,* was demonstrated using an array of about 1,000 ultracold beryllium ions (electrically charged atoms) trapped by electric and magnetic fields.

Each ion can act as a quantum bit (qubit) for storing information in a quantum computer. These ions form neatly ordered crystals, similar to arrays of qubits being fabricated by other researchers using semiconducting and superconducting circuitry. Arrays like this potentially could be used as multi-bit quantum memories.

The new NIST technique counteracts a major threat to the reliability of quantum memories: the potential for small disturbances, such as stray electric or magnetic fields, to create random errors in the qubits. The NIST team applied customized sequences of microwave pulses to reverse the accumulation of such random errors in all qubits simultaneously.

"Simulations show that under appropriate conditions this method can reduce the error rate in quantum computing systems up to a hundred times more than comparable techniques. Our measurement results validate these predictions," says Hermann Uys, a NIST guest researcher who is a lead author of the paper. Uys is visiting from the Council for Scientific and Industrial Research, Pretoria, South Africa.

Co-lead author Michael J. Biercuk, a NIST post-doc, notes that correcting qubit errors after they occur will require extraordinary resources, whereas early suppression of errors is far more efficient, and improves the performance of subsequent error correction. The new NIST error-suppression method could enable quantum computers of various designs to achieve error rates far below the so-called fault-tolerance threshold of about 1 error in 10,000 computational operations (0.01 percent), Biercuk says. If error rates can be reduced below this level, building a useful quantum computer becomes considerably more realistic.

Quantum computers, by relying on the unusual properties of the atomic-scale world to store and process data, could someday break commonly used encryption codes, perform faster searches of enormous databases, and determine the most efficient schedules for everything from airlines to traveling salespeople. They could also simulate complex quantum systems that are too difficult to study using today's computers or through direct experiments. But first, practical quantum computers need to be built, and their components need to be reliable.

Unlike today's computers, which use transistors that are switched on or off to represent bit values of 1 or 0, quantum computers would manipulate the properties of qubits to represent 1 or 0 or-thanks to the peculiarities of the quantum world-both at the same time. But these "quantum states" are so delicate that qubit values would be highly susceptible to errors caused by the slightest electronic noise.

Under ideal conditions, and in the absence of deliberate manipulations, ion qubit states evolve in a predictable way, similar to a spinning top tipped from its vertical axis. Environmental interference can lead to a buildup of error, but the new NIST pulse method can reverse this accumulation, thus preserving the original state.

The NIST method is an adaptation of "spin echo" techniques used for decades to suppress errors in nuclear magnetic resonance (the basis of magnetic resonance imaging). In spin echo, evenly spaced control pulses will nearly reverse the buildup of error, as long as fluctuations are slow relative to the time between pulses.

Recently, scientists at another institution published a theory of how to modify pulse timing in order to improve noise suppression. The NIST team conducted the first experimental demonstration of this theory, and then extended these ideas by generating novel pulse sequences tailored to the ambient noise environment. These novel sequences can be found quickly through an experimental feedback technique, and were shown to significantly outperform other sequences without the need for any knowledge of the noise characteristics. The researchers tested these pulse sequences under realistic noise conditions simulating those appropriate for different qubit technologies, making their results broadly applicable.

The research was conducted in the laboratory of NIST physicist John J. Bollinger, the project lead, and funded in part by the Intelligence Advanced Research Projects Agency.

* M.J. Biercuk, H. Uys, A.P. VanDevender, N. Shiga, W.M. Itano and J.J. Bollinger. Optimized Dynamical Decoupling in a Model Quantum Memory. Nature. April 23.

Laura Ost | EurekAlert!
Further information:

More articles from Information Technology:

nachricht New 3-D wiring technique brings scalable quantum computers closer to reality
19.10.2016 | University of Waterloo

nachricht Quantum computers: 10-fold boost in stability achieved
18.10.2016 | University of New South Wales

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Novel mechanisms of action discovered for the skin cancer medication Imiquimod

21.10.2016 | Life Sciences

Second research flight into zero gravity

21.10.2016 | Life Sciences

How Does Friendly Fire Happen in the Pancreas?

21.10.2016 | Life Sciences

More VideoLinks >>>