Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique controls autonomous vehicles on a dirt track

24.05.2016

Strategy helps self-driving, robotic vehicles maintain control at edge of handling limits

A Georgia Institute of Technology research team has devised a novel way to help keep a driverless vehicle under control as it maneuvers at the edge of its handling limits. The approach could help make self-driving cars of the future safer under hazardous road conditions.


Georgia Tech researchers are studying a one-fifth-scale autonomous vehicle as it traverses a dirt track. The work will help the engineers understand how to help driverless vehicles face the risky and unusual road conditions of the real world.

Credit: Rob Felt/Georgia Tech

Researchers from Georgia Tech's Daniel Guggenheim School of Aerospace Engineering (AE) and the School of Interactive Computing (IC) have assessed the new technology by racing, sliding, and jumping one-fifth-scale, fully autonomous auto-rally cars at the equivalent of 90 mph. The technique uses advanced algorithms and onboard computing, in concert with installed sensing devices, to increase vehicular stability while maintaining performance.

The work, tested at the Georgia Tech Autonomous Racing Facility, is sponsored by the U.S. Army Research Office. A paper covering this research was presented at the recent International Conference on Robotics and Automation (ICRA), held May 16-21.

"An autonomous vehicle should be able to handle any condition, not just drive on the highway under normal conditions," said Panagiotis Tsiotras, an AE professor who is an expert on the mathematics behind rally-car racing control. "One of our principal goals is to infuse some of the expert techniques of human drivers into the brains of these autonomous vehicles."

Traditional robotic-vehicle techniques use the same control approach whether a vehicle is driving normally or at the edge of roadway adhesion, Tsiotras explained. The Georgia Tech method - known as model predictive path integral control (MPPI) - was developed specifically to address the non-linear dynamics involved in controlling a vehicle near its friction limits.

Utilizing Advanced Concepts

"Aggressive driving in a robotic vehicle -- maneuvering at the edge -- is a unique control problem involving a highly complex system," said Evangelos Theodorou, an AE assistant professor who is leading the project. "However, by merging statistical physics with control theory, and utilizing leading-edge computation, we can create a new perspective, a new framework, for control of autonomous systems."

The Georgia Tech researchers used a stochastic trajectory-optimization capability, based on a path-integral approach, to create their MPPI control algorithm, Theodorou explained. Using statistical methods, the team integrated large amounts of handling-related information, together with data on the dynamics of the vehicular system, to compute the most stable trajectories from myriad possibilities.

Processed by the high-power graphics processing unit (GPU) that the vehicle carries, the MPPI control algorithm continuously samples data coming from global positioning system (GPS) hardware, inertial motion sensors, and other sensors. The onboard hardware-software system performs real-time analysis of a vast number of possible trajectories and relays optimal handling decisions to the vehicle moment by moment.

In essence, the MPPI approach combines both the planning and execution of optimized handling decisions into a single highly efficient phase. It's regarded as the first technology to carry out this computationally demanding task; in the past, optimal- control data inputs could not be processed in real time.

Fully Autonomous Vehicles

The researchers' two auto-rally vehicles -- custom built by the team -- utilize special electric motors to achieve the right balance between weight and power. The cars carry a motherboard with a quad-core processor, a potent GPU, and a battery.

Each vehicle also has two forward-facing cameras, an inertial measurement unit, and a GPS receiver, along with sophisticated wheel-speed sensors. The power, navigation, and computation equipment is housed in a rugged aluminum enclosure able to withstand violent rollovers. Each vehicle weighs about 48 pounds and is about three feet long.

These rolling robots are able to test the team's control algorithms without any need for off-vehicle devices or computation, except for a nearby GPS receiver. The onboard GPU lets the MPPI algorithm sample more than 2,500, 2.5-second-long trajectories in under 1/60 of a second.

An important aspect in the team's autonomous-control approach centers on the concept of "costs" - key elements of system functionality. Several cost components must be carefully matched to achieve optimal performance.

In the case of the Georgia Tech vehicles, the costs consist of three main areas: the cost for staying on the track, the cost for achieving a desired velocity, and the cost of the control system. A sideslip-angle cost was also added to improve vehicle stability.

The cost approach is important to enabling a robotic vehicle to maximize speed while staying under control, explained James Rehg, a professor in the Georgia Tech School of Interactive Computing who is collaborating with Theodorou and Tsiotras.

It's a complex balancing act, Rehg said. For example, when the researchers reduced one cost term to try to prevent vehicle sliding, they found they got increased drifting behavior.

"What we're talking about here is using the MPPI algorithm to achieve relative entropy minimization -- and adjusting costs in the most effective way is a big part of that," he said. "To achieve the optimal combination of control and performance in an autonomous vehicle is definitely a non-trivial problem."

Media Contact

Jason Maderer
maderer@gatech.edu
404-660-2926

 @GeorgiaTech

http://www.gatech.edu 

Jason Maderer | EurekAlert!

More articles from Information Technology:

nachricht Smart Computers
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht AI implications: Engineer's model lays groundwork for machine-learning device
18.08.2017 | Washington University in St. Louis

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>