Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Software Combines 3D Printing with Traditional Manufacturing

18.11.2015

New software from Siemens is bringing together 3D printing and traditional manufacturing methods. Products or work pieces prepared using NX Hybrid Additive Manufacturing software can then be completed using “hybrid machines” that combine subtractive processes such as milling, boring and grinding with additive methods such as 3D printing.

Compared to traditional methods of work piece manufacture, 3D printing, otherwise known as additive manufacturing, makes a much wider range of shapes possible. Hybrid machine tools that combine both methods in a single manufacturing station are a relatively new concept and open up totally new production opportunities.


Picture DMG MORI

Siemens’ NX Hybrid Additive Manufacturing is one of the first such programs for this type of manufacturing station. At the Machine Tool World Exposition (EMO) in Milan, Italy, Siemens demonstrated its solution using a hybrid machine from DMG Mori that combines laser cladding with a multi-axis milling machine.

As an industrial user, Siemens has long favored additive manufacturing methods such as laser cladding as a means of building up metals layer by layer.

For example, the time taken to manufacture burner heads for gas turbines has been cut by up to 90 percent since it became possible to “print” them directly onto the burner body. A similar method can be used to manufacture a product in normal series production and then add on individual components by printing.

3D printing also makes entirely new shapes possible, such as honeycomb structures. And components that have previously had a solid structure can now be made hollow with relative ease to save weight.

If a high degree of precision is required, additive manufacturing methods can be combined with traditional processes. Hybrid machines that enable a work piece to be built up by adding material, followed by high-precision finishing work, are therefore an ideal solution.


Optimizing the Connection between Additive and Subtractive Steps

When it comes to additive methods, manufacturing equipment requires fundamentally different programming. For example, the paths followed by the print head are entirely different from those of a cutter head. Temperature is another key control parameter. With laser cladding, the work area is heated and metal is melted onto it.

The volume of heat applied by the print head depends on the temperature of the work piece. The longer the interval since the last processing stage, the more it will have cooled and the more laser power the print head will need to apply.

A third factor with regard to hybrid machines is that the changeover between the additive and subtractive stages must be carefully worked out, for example by ensuring that the finishing work is performed on a printed part before the parts added later make it inaccessible to the cutter.

This is why Siemens has expanded its PLM NX software for product design, production and manufacture to include the NX Hybrid Additive Manufacturing module. This software makes it possible to produce products using a combination of subtractive and additive methods, and ensures that the individual processing stages are arranged meaningfully.

It simulates the entire manufacturing process and, once it has been checked, transmits it to the machine control system. NX Hybrid Additive Manufacturing is currently configured specifically for the Lasertec 65 3D from DMG Mori and the Siemens Sinumerik 840D sl CNC control system.
Norbert Aschenbrenner


Mr. Dr. Norbert Aschenbrenner

Editorial Office

Siemens AG
norbert.aschenbrenner@siemens.com


Mr. Florian Martini

Press contact

Siemens AG
florian.martini@siemens.com

Contact us

Write us an e-mail

pof@siemens.com

Dr. Norbert Aschenbrenner | Siemens Pictures of the Future
Further information:
http://www.siemens.com/innovation

More articles from Information Technology:

nachricht Stable magnetic bit of three atoms
21.09.2017 | Sonderforschungsbereich 668

nachricht Drones can almost see in the dark
20.09.2017 | Universität Zürich

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>