Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New RFID technology helps robots find household objects

22.09.2014

Mobile robots could be much more useful in homes, if they could locate people, places and objects.

Today’s robots usually see the world with cameras and lasers, which have difficulty reliably recognizing things and can miss objects that are hidden in clutter. A complementary way robots can “sense” what is around them is through the use of small ultra-high frequency radio-frequency identification (UHF RFID) tags.


A Georgia Tech research team has developed a new search algorithm that improves a robot’s ability to find and navigate to tagged objects.

Inexpensive self-adhesive tags can be stuck on objects, allowing an RFID-equipped robot to search a room for the correct tag’s signal, even when the object is hidden out of sight. Once the tag is detected, the robot knows the object it’s trying to find isn’t far away.

“But RFID doesn’t tell the robot where it is,” said Charlie Kemp, an associate professor in Georgia Tech’s Wallace H. Coulter Department of Biomedical Engineering. “To actually find the object and get close to it, the robot has to be more clever.”

That’s why Kemp, former Georgia Tech student Travis Deyle and University of Washington Professor Matthew Reynolds developed a new search algorithm that improves a robot’s ability to find and navigate to tagged objects. The team has implemented their system on a PR2 robot, allowing it to travel through a home and correctly locate different types of tagged household objects, including a medication bottle, TV remote, phone and hair brush. The research was presented September 14-18 in Chicago at the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

The researchers have equipped a PR2 robot with articulated, directionally sensitive antennas and a new algorithm that allows the robot to successfully find and navigate to the intended object. Due to the physics of radio-frequency propagation, these antennas tend to receive stronger signals from a tag when they are closer to it and pointed more directly at it. By moving around the antennas on its shoulders and driving around the room, the PR2 can figure out the direction it should move to get a stronger signal from a tag and thus become closer to a tagged object.  In essence, the robot plays the classic childhood game of “Hotter/Colder” with the tag telling the PR2 when it’s getting closer to the target object.

In contrast to other approaches, the robot doesn’t explicitly estimate the 3D location of the target object, which significantly reduces the complexity of the algorithm.

“Instead the robot can use its mobility and our special behaviors to get close to a tag and oriented toward it,” said Deyle, who conducted the study in Kemp’s lab while earning his doctoral degree in Electrical and Computer Engineering from Georgia Tech.

Deyle, who currently works at Google, says the research has implications for future home robots and is particularly compelling for applications such as helping people with medicine, as RFID is able to provide precise identification information about an object or a person.

“This could allow a robot to search for, grasp and deliver the right medication to the right person at the right time,” he added. “RFID provides precise identification, so the risk of delivering the wrong medication is dramatically reduced. Creating a system that allows robots to accurately locate the correct tag is an important first step.”

Reynolds added, “While we have demonstrated this technology with a few common household objects, the RFID tags can uniquely identify billions of different objects with essentially zero false positives. This is important because many objects look alike, yet must be uniquely identified – for example, identifying the correct medication bottle that should be delivered to a specific person.”

“With a little modification of the objects in your home, a robot could quickly take inventory of your possessions and navigate to an object of your choosing,” said Kemp, a professor in Georgia Tech’s School of Biomedical Engineering. “Are you looking for something? The robot will show you where it is.”

CITATION: Travis Deyle, Matt Reynolds and Charles C. Kemp, “Finding and Navigating to Household Objects with UHF RFID Tags by Optimizing RF Signal Strength.” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2014.

FUNDING: This work was supported in part by National Science Foundation (NSF) awards CBET-0932592 and CBET-0931924, an NSF Graduate Research Fellowship Program award and Willow Garage. Any conclusions or opinions are those of the authors and do not necessarily represent the official views of the sponsoring agency.

Jason Maderer | Eurek Alert!
Further information:
http://www.news.gatech.edu/2014/09/22/new-rfid-technology-helps-robots-find-household-objects

Further reports about: Biomedical Conference IEEE NSF RFID RFID tags RFID technology Robots algorithm medication navigate objects right person

More articles from Information Technology:

nachricht Five developments for improved data exploitation
19.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Smart Manual Workstations Deliver More Flexible Production
04.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>