Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New RFID technology helps robots find household objects

22.09.2014

Mobile robots could be much more useful in homes, if they could locate people, places and objects.

Today’s robots usually see the world with cameras and lasers, which have difficulty reliably recognizing things and can miss objects that are hidden in clutter. A complementary way robots can “sense” what is around them is through the use of small ultra-high frequency radio-frequency identification (UHF RFID) tags.


A Georgia Tech research team has developed a new search algorithm that improves a robot’s ability to find and navigate to tagged objects.

Inexpensive self-adhesive tags can be stuck on objects, allowing an RFID-equipped robot to search a room for the correct tag’s signal, even when the object is hidden out of sight. Once the tag is detected, the robot knows the object it’s trying to find isn’t far away.

“But RFID doesn’t tell the robot where it is,” said Charlie Kemp, an associate professor in Georgia Tech’s Wallace H. Coulter Department of Biomedical Engineering. “To actually find the object and get close to it, the robot has to be more clever.”

That’s why Kemp, former Georgia Tech student Travis Deyle and University of Washington Professor Matthew Reynolds developed a new search algorithm that improves a robot’s ability to find and navigate to tagged objects. The team has implemented their system on a PR2 robot, allowing it to travel through a home and correctly locate different types of tagged household objects, including a medication bottle, TV remote, phone and hair brush. The research was presented September 14-18 in Chicago at the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

The researchers have equipped a PR2 robot with articulated, directionally sensitive antennas and a new algorithm that allows the robot to successfully find and navigate to the intended object. Due to the physics of radio-frequency propagation, these antennas tend to receive stronger signals from a tag when they are closer to it and pointed more directly at it. By moving around the antennas on its shoulders and driving around the room, the PR2 can figure out the direction it should move to get a stronger signal from a tag and thus become closer to a tagged object.  In essence, the robot plays the classic childhood game of “Hotter/Colder” with the tag telling the PR2 when it’s getting closer to the target object.

In contrast to other approaches, the robot doesn’t explicitly estimate the 3D location of the target object, which significantly reduces the complexity of the algorithm.

“Instead the robot can use its mobility and our special behaviors to get close to a tag and oriented toward it,” said Deyle, who conducted the study in Kemp’s lab while earning his doctoral degree in Electrical and Computer Engineering from Georgia Tech.

Deyle, who currently works at Google, says the research has implications for future home robots and is particularly compelling for applications such as helping people with medicine, as RFID is able to provide precise identification information about an object or a person.

“This could allow a robot to search for, grasp and deliver the right medication to the right person at the right time,” he added. “RFID provides precise identification, so the risk of delivering the wrong medication is dramatically reduced. Creating a system that allows robots to accurately locate the correct tag is an important first step.”

Reynolds added, “While we have demonstrated this technology with a few common household objects, the RFID tags can uniquely identify billions of different objects with essentially zero false positives. This is important because many objects look alike, yet must be uniquely identified – for example, identifying the correct medication bottle that should be delivered to a specific person.”

“With a little modification of the objects in your home, a robot could quickly take inventory of your possessions and navigate to an object of your choosing,” said Kemp, a professor in Georgia Tech’s School of Biomedical Engineering. “Are you looking for something? The robot will show you where it is.”

CITATION: Travis Deyle, Matt Reynolds and Charles C. Kemp, “Finding and Navigating to Household Objects with UHF RFID Tags by Optimizing RF Signal Strength.” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2014.

FUNDING: This work was supported in part by National Science Foundation (NSF) awards CBET-0932592 and CBET-0931924, an NSF Graduate Research Fellowship Program award and Willow Garage. Any conclusions or opinions are those of the authors and do not necessarily represent the official views of the sponsoring agency.

Jason Maderer | Eurek Alert!
Further information:
http://www.news.gatech.edu/2014/09/22/new-rfid-technology-helps-robots-find-household-objects

Further reports about: Biomedical Conference IEEE NSF RFID RFID tags RFID technology Robots algorithm medication navigate objects right person

More articles from Information Technology:

nachricht NASA CubeSat to test miniaturized weather satellite technology
10.11.2017 | NASA/Goddard Space Flight Center

nachricht New approach uses light instead of robots to assemble electronic components
08.11.2017 | The Optical Society

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>