Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Network control: Letting noise lead the way

18.09.2015

Research team leverage cells' noisy nature to keep them healthy

A cell's life is a noisy affair.


Using a newly-developed computational algorithm, Northwestern University researchers showed that randomness within and among cells, called "noise," can be manipulated to control the networks that govern the workings of living cells -- promoting cellular health and potentially alleviating diseases such as cancer.

Credit: Daniel K. Wells

These building blocks of life are constantly changing. They can spontaneously express different proteins and genes, change shape and size, die or resist dying, or become damaged and cancerous. Even within a population of the same type of cell, there is immense random variability between cells' structures, levels of protein expression, and sizes.

"High dimensionality and noise are inherent properties of large intracellular networks," said Adilson E. Motter, the Charles E. and Emma H. Morrison Professor of Physics and Astronomy in Northwestern University's Weinberg College of Arts and Sciences. "Both have long been regarded as obstacles to the rational control of cellular behavior."

Motter and his collaborators at Northwestern have challenged and redefined this long-held belief. Using a newly-developed computational algorithm, they showed that this randomness within and among cells, called "noise," can be manipulated to control the networks that govern the workings of living cells -- promoting cellular health and potentially alleviating diseases such as cancer.

Supported by the National Cancer Institute Physical Science-Oncology Center at Northwestern and the National Science Foundation, the research is described in the September 16 issue of the journal Physical Review X. Motter and William L. Kath, professor of Engineering Sciences and Applied Mathematics, are coauthors of the paper. Daniel K.Wells, a graduate student in applied math, is the paper's first author.

"Noise refers to the random aspects of cell behavior, especially gene regulation," Wells said. "Gene regulation is not like a train station, where gene expression-regulating proteins are shipped in at regular intervals, turn a gene on or off, and then are shipped out. Instead, gene expression is constantly, and randomly, being modified."

By leveraging noise, the team found that the high-dimensional gene regulatory dynamics could be controlled instead by controlling a much smaller and simpler network, termed a "network of state transitions."

In this network cells randomly transition from one phenotypic state to another -- sometimes from states representing healthy cell phenotypes to unhealthy states where the conditions are potentially cancerous. The transition paths between these states can be predicted, as cells making the same transition will typically travel along similar paths in their gene expression.

The team compares this phenomenon to the formation of pathways at a university campus. If there is no paved path between a pair of buildings, people will usually taken the path that is the easiest to traverse, tromping down the grass to reveal the dirt beneath. Eventually, campus planners may see this pre-defined path and pave it.

Similarly, upon initially analyzing a gene regulatory network the team first used noise to define the most-likely transition pathway between different system states, and connected these paths into the network of state transitions. By doing so the researchers could then focus on just one path between any two states, distilling a multi-dimensional system to a series of one-dimensional interconnecting paths.

"Even in systems as complex and high-dimensional as a gene regulatory network, there's typically only one best path that a noisy transition will follow from one state to the next," Kath said. "You would think that many different paths are possible, but that's not true: one path is much better than all of the others."

The team then developed a computational approach that can identify optimal modifications of experimentally-adjustable parameters, such as protein activation rates, to encourage desired transitions between different states. The method is ideal for experimental implementations because it changes the system's response to noise rather than changing the noise itself, which is nearly impossible to control.

"Noise is extremely important for systems," Wells said. "Instead of directly controlling a cell to move from a bad state to a good state, which is hard, we just make it easier for noise to do this on its own. This is analogous to paving just one path departing a building and leaving all the others unpaved--people leaving the building are more likely to walk on the paved path, and will thus preferentially end up where that path goes."

Though the current research is theoretical and focuses on biological networks, the team posits that this strategy could be used for other complex networks where noise is present, like in food webs and power grids, and could potentially be used to prevent sudden transitions in these systems, which lead to ecosystem collapses and power grid failures.

Megan Fellman | idw - Informationsdienst Wissenschaft

More articles from Information Technology:

nachricht NASA CubeSat to test miniaturized weather satellite technology
10.11.2017 | NASA/Goddard Space Flight Center

nachricht New approach uses light instead of robots to assemble electronic components
08.11.2017 | The Optical Society

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>