Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Network control: Letting noise lead the way

18.09.2015

Research team leverage cells' noisy nature to keep them healthy

A cell's life is a noisy affair.


Using a newly-developed computational algorithm, Northwestern University researchers showed that randomness within and among cells, called "noise," can be manipulated to control the networks that govern the workings of living cells -- promoting cellular health and potentially alleviating diseases such as cancer.

Credit: Daniel K. Wells

These building blocks of life are constantly changing. They can spontaneously express different proteins and genes, change shape and size, die or resist dying, or become damaged and cancerous. Even within a population of the same type of cell, there is immense random variability between cells' structures, levels of protein expression, and sizes.

"High dimensionality and noise are inherent properties of large intracellular networks," said Adilson E. Motter, the Charles E. and Emma H. Morrison Professor of Physics and Astronomy in Northwestern University's Weinberg College of Arts and Sciences. "Both have long been regarded as obstacles to the rational control of cellular behavior."

Motter and his collaborators at Northwestern have challenged and redefined this long-held belief. Using a newly-developed computational algorithm, they showed that this randomness within and among cells, called "noise," can be manipulated to control the networks that govern the workings of living cells -- promoting cellular health and potentially alleviating diseases such as cancer.

Supported by the National Cancer Institute Physical Science-Oncology Center at Northwestern and the National Science Foundation, the research is described in the September 16 issue of the journal Physical Review X. Motter and William L. Kath, professor of Engineering Sciences and Applied Mathematics, are coauthors of the paper. Daniel K.Wells, a graduate student in applied math, is the paper's first author.

"Noise refers to the random aspects of cell behavior, especially gene regulation," Wells said. "Gene regulation is not like a train station, where gene expression-regulating proteins are shipped in at regular intervals, turn a gene on or off, and then are shipped out. Instead, gene expression is constantly, and randomly, being modified."

By leveraging noise, the team found that the high-dimensional gene regulatory dynamics could be controlled instead by controlling a much smaller and simpler network, termed a "network of state transitions."

In this network cells randomly transition from one phenotypic state to another -- sometimes from states representing healthy cell phenotypes to unhealthy states where the conditions are potentially cancerous. The transition paths between these states can be predicted, as cells making the same transition will typically travel along similar paths in their gene expression.

The team compares this phenomenon to the formation of pathways at a university campus. If there is no paved path between a pair of buildings, people will usually taken the path that is the easiest to traverse, tromping down the grass to reveal the dirt beneath. Eventually, campus planners may see this pre-defined path and pave it.

Similarly, upon initially analyzing a gene regulatory network the team first used noise to define the most-likely transition pathway between different system states, and connected these paths into the network of state transitions. By doing so the researchers could then focus on just one path between any two states, distilling a multi-dimensional system to a series of one-dimensional interconnecting paths.

"Even in systems as complex and high-dimensional as a gene regulatory network, there's typically only one best path that a noisy transition will follow from one state to the next," Kath said. "You would think that many different paths are possible, but that's not true: one path is much better than all of the others."

The team then developed a computational approach that can identify optimal modifications of experimentally-adjustable parameters, such as protein activation rates, to encourage desired transitions between different states. The method is ideal for experimental implementations because it changes the system's response to noise rather than changing the noise itself, which is nearly impossible to control.

"Noise is extremely important for systems," Wells said. "Instead of directly controlling a cell to move from a bad state to a good state, which is hard, we just make it easier for noise to do this on its own. This is analogous to paving just one path departing a building and leaving all the others unpaved--people leaving the building are more likely to walk on the paved path, and will thus preferentially end up where that path goes."

Though the current research is theoretical and focuses on biological networks, the team posits that this strategy could be used for other complex networks where noise is present, like in food webs and power grids, and could potentially be used to prevent sudden transitions in these systems, which lead to ecosystem collapses and power grid failures.

Megan Fellman | idw - Informationsdienst Wissenschaft

More articles from Information Technology:

nachricht Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale
18.01.2017 | The Hebrew University of Jerusalem

nachricht Data analysis optimizes cyber-physical systems in telecommunications and building automation
18.01.2017 | Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>