Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA CubeSat to test miniaturized weather satellite technology

10.11.2017

Behind every weather forecast--from your local, five-day prediction to a late-breaking hurricane track update--are the satellites that make them possible. Government agencies depend on observations from weather satellites to inform forecast models that help us prepare for approaching storms and identify areas that need evacuating or emergency first responders. 

Weather satellites have traditionally been large, both in the effort needed to build them and in actual size. They can take several years to build and can be as big as a small school bus. But all of that could change in the future with the help of a shoebox-sized satellite that will start orbiting Earth later this month.


The Microwave Radiometer Technology Acceleration (MiRaTA) satellite, a 3U CubeSat, is shown with solar panels fully deployed, flanking the body of the spacecraft, which has a circular aperture at the top for the microwave radiometer antenna, used for atmospheric science measurements. There are also two small, thin tape-measure antennas on the top, used for UHF radio communication with the ground station.

Credit: MIT Lincoln Laboratory

The NASA-funded CubeSat, called Microwave Radiometer Technology Acceleration (MiRaTA), will be launched into Earth's orbit from the rocket carrying the next big U.S. weather satellite (NOAA's JPSS-1) into space. MiRaTA is designed to demonstrate that a small satellite can carry instrument technology that's capable of reducing the cost and size of future weather satellites and has the potential to routinely collect reliable weather data.

Microwave radiometers are one of the workhorse instruments aboard today's weather satellites. These sensitive instruments measure radio frequency signals related to the thermal radiation emitted by atmospheric gases, such as molecular oxygen and water vapor, and also detect particles such as cloud ice. These data are key inputs for models that track storms and other weather events.

Calibrating these radiometers is important for keeping them from drifting so their data can be used for accurate weather and climate models. Therefore, a calibration target is usually included in the satellite to help the radiometer maintain its accuracy.

Miniaturizing microwave radiometer instruments to fit on a CubeSat leads to the challenge of finding a calibration instrument that is not only accurate but also compact, said Kerri Cahoy, principal investigator for MiRaTA and an associate professor in the Department of Aeronautics and Astronautics at the Massachusetts Institute of Technology. "You don't have room for the bulky calibration targets that you would normally use on larger satellites," Cahoy said. "Microwave radiometer calibration targets on larger satellites can be the size of a toaster, but for CubeSats, it would have to be the size of a deck of cards."

Cahoy and her colleague William Blackwell, the microwave radiometer instrument lead at MIT Lincoln Laboratory, have come up with a solution based on a technique she studied in graduate school called radio occultation (RO), whereby radio signals received from GPS satellites in a higher orbit are used to measure the temperature of the same volume of atmosphere that the radiometer is viewing. The GPS-RO temperature measurement can then be used for calibrating the radiometer.

"In physics class, you learn that a pencil submerged in water looks like it's broken in half because light bends differently in the water than in the air," Cahoy said. "Radio waves are like light in that they refract when they go through changing densities of air, and we can use the magnitude of the refraction to calculate the temperature of the surrounding atmosphere with near-perfect accuracy and use this to calibrate a radiometer."

In 2012 NASA's In-Space Validation of Earth Science Technologies (InVEST) program issued a request for technology demonstration proposals, which prompted Blackwell and Cahoy, who was then teaching at MIT, put their theory to the test by offering a project to Cahoy's students in her sensors and instrumentation class to determine if the idea was feasible. When two students demonstrated through computer modeling that radio occultation could indeed function for radiometer calibration, Cahoy and Blackwell asked The Aerospace Corporation's Rebecca Bishop, who has developed GPS-RO receivers for CubeSats, to join the team. They then submitted a full proposal for MiRaTA to NASA, which gave the greenlight for funding in the spring of 2013.

Building MiRaTA was a team effort. Bishop modified an off-the-shelf, low-cost GPS receiver to make the radio occultation measurements for calibration; MIT Lincoln Laboratory and University of Massachusetts Amherst applied their engineering skills to further miniaturize the microwave radiometer; and Cahoy and her student team, guided by expert mentors at MIT Lincoln, built the satellite that would house everything.

"Building a CubeSat can be hard because you have to put batteries, a radio, a computer, your instruments, wheels that you spin to tip and turn your satellite, and folded solar panels and antennas all into a very small space," Cahoy said. "And you're using the space equivalent of scotch tape and super glue to constrain this mess of wires and connectors and get it into its housing.

"But," Cahoy added, "the hard work will really pay off in great science data if it all goes as planned."

In the best-case scenario, three weeks after launch MiRaTA will be fully operational, and within three months the team will have obtained validation data from both the radiometer and the GPS receiver. The big goal for the mission--declaring the technology demonstration a success--would be confirmed a bit farther down the road, at least half a year away, following the data analysis.

If MiRaTA's technology validation is successful, Cahoy said she envisions an eventual constellation of these CubeSats orbiting the entire Earth, taking snapshots of the state of the atmosphere and weather every 15 minutes--frequent enough to track storms, from blizzards to hurricanes, in real time. "Our goal is to have our radiometers perform just as well as those on current weather satellites and be able to provide the kind of data that helps agencies and people in the path of a natural disaster prepare early and wisely," she said.

"This is a very exciting mission as it will be the first on-orbit demonstration of an all-weather, three-frequency radiometer CubeSat using atmospheric GPS-RO-based calibration," said NASA Jet Propulsion Laboratory's Charles Norton, a program associate in NASA's Earth Science Technology Office (ESTO) and the task manager for MiRaTA. "It's a true testament to the creativity and innovation of the teams involved that they're advancing measurement technologies for future small satellite constellation missions," he said, while adding that Utah State University's Space Dynamics Laboratory and NASA Wallops Flight Facility are supporting ground station and mission operations for the CubeSat.

MiRaTA and other Earth science InVEST missions are funded and managed by NASA's ESTO program in NASA's Earth Science Division. ESTO supports technologists at NASA centers, industry and academia to develop, refine and demonstrate new methods for observing Earth from space, from information systems to new components and instruments.

Small satellites, including CubeSats, are playing an increasingly larger role in exploration, technology demonstration, scientific research and educational investigations at NASA, including: planetary space exploration; Earth observations; fundamental Earth and space science; and developing precursor science instruments like cutting-edge laser communications, satellite-to-satellite communications and autonomous movement capabilities.

###

For NASA's ESTO program, visit: https://esto.nasa.gov/

Media Contact

The NASA-funded CubeSat, called Microwave Radiometer Technol
samson.k.reiny@nasa.gov

 @NASAGoddard

http://www.nasa.gov/goddard 

samson.k.reiny@nasa.gov | EurekAlert!

More articles from Information Technology:

nachricht New approach uses light instead of robots to assemble electronic components
08.11.2017 | The Optical Society

nachricht A 'virtual wall' that improves wireless security and performance
08.11.2017 | Dartmouth College

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

Im Focus: Support Free with “TwoCure” – Innovation in Resin-Based 3D Printing

The Fraunhofer Institute for Laser Technology ILT and Rapid Shape GmbH are working together to further develop resin-based 3D printing. The new “TwoCure” process requires no support structures and is significantly more efficient and productive than conventional 3D printing techniques for plastic components. Experts from Fraunhofer ILT will be presenting the state-funded joint development that makes use of the interaction of light and cold in forming the components at formnext 2017 from November 14 to 17 in Frankfurt am Main.

Much like stereolithography, one of the best-known processes for printing 3D plastic components works using photolithographic light exposure that causes liquid...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

 
Latest News

Transfer technique produces wearable gallium nitride gas sensors

10.11.2017 | Power and Electrical Engineering

NASA CubeSat to test miniaturized weather satellite technology

10.11.2017 | Information Technology

Research shows ice sheets as large as Greenland's melted fast in a warming climate

10.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>