Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NASA completes critical design review of one Landsat instrument

NASA engineers have begun building hardware for a new Landsat satellite instrument that helps monitor water consumption — an important capability in the U.S. West where precipitation is sparse and water rights are allocated — now that they have passed an independent review of the instrument's design and integration and testing methods.

"Having received the green light on our design during NASA's Critical Design Review, we are moving out on full implementation of our instrument," said Cathy Richardson, the instrument manager of the Thermal Infrared Sensor (TIRS), which will be built at the Goddard Space Flight Center in Greenbelt, Md.

TIRS is one of two instruments flying on the Landsat Data Continuity Mission (LDCM), the next generation in a series of satellites that have provided multispectral data of Earth's surface for more than 38 years. TIRS and the Operational Land Imager (OLI), being built by Ball Aerospace & Technologies Corp in Boulder, Colo., will extend Landsat's unparalleled record of Earth's changing landscapes.

NASA plans to launch LDCM in December 2012 as the follow-on to Landsat-7, launched in 1999. Landsat 7 and 5, launched in 1984, are continuing to supply images and operating beyond their design lives. As with preceding Landsat missions, the U.S. Geological Survey (USGS) will operate LDCM and maintain its data archive once it begins observations.

The 236-kg (525-lb.) TIRS is a two-channel thermal imager, providing 100-meter (328 feet) spatial resolution across a 185 km (115 mile) field-of-view. Both Landsats-5 and -7 provide thermal data, and the addition of TIRS will extend the Landsat database in the thermal infrared bands needed by a variety of users.

Thermal data are used operationally to monitor such things as water consumption on a field-by-field basis in the U.S. West mainly for agricultural purposes, said LDCM project scientist Jim Irons. TIRS will continue providing surface-temperature readings considered vital in a technique that resource managers in Idaho and other western states use to measure water use through evapotranspiration. As its name implies, evapotranspiration combines the evaporation of water into the atmosphere and the water vapor released by plants through respiration. "A transpiring plant is cooler than the surrounding area," Irons said. "If a forest is dry, it will not transpire and it will be warmer."

Western resource managers see the measurement technique as the most effective way to determine who is consuming water because it more accurately defines how much water is being removed from the system by a given individual or entity. Since adopting the technique, which its developers call METRIC for Mapping EvapoTranspiration with High Resolution and Internalized Calibration, resource managers report that the technique has helped resolve conflicts over water consumption among farmers irrigating their fields.

Landsat thermal data also are used to map urban heat fluxes for air-quality monitoring, assess volcano hazards, detect and screen clouds, track lake thermal plumes from power plants, map burn areas and assess wildfire risks, and identify mosquito-breeding areas.

TIRS will provide the infrared surface-temperature data with high-sensitivity, cryogenically cooled, Quantum Well Infrared Photodetector (QWIP) arrays, a detector technology that Goddard engineer Murzy Jhabvala developed over nearly two decades. With various funding sources, Jhabvala had matured the technology and had even created years earlier a one-million-pixel array that could sense a range of longer wavelength bands — more robust than the TIRS requirement of 10.5 to 12.5 micrometers. TIRS is the first spaceflight instrument to use the technology.

"Instrument developers selected the QWIP technology because it could easily meet the instrument's performance requirements and production schedule," Jhabvala said, adding that he and his team began working on the detector system in July 2008.

In particular, TIRS will carry three 640 x 512 QWIP arrays that are made of Gallium Arsenide semiconductor chips layered with more than 100 layers of detector material. The layers act as quantum wells, which trap electrons — the fundamental particles that carry an electric current — so that only light with a specific energy can release them. If the light with the correct energy hits one of the quantum wells in the array, the freed electron flows through a separate readout chip above the array where it is recorded. A computer uses this information to create an image of the infrared source. Fabricators can build a detector to sense specific wavelength bands by varying the composition and thickness of the layers.

Jhabvala and his team qualified the technology for actual spaceflight last August, and plan to deliver the detector system this November for integration into the instrument.

For more information on the LCDM, visit:

Sarah Dewitt | EurekAlert!
Further information:

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>