Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Multi-gigabit access via copper

23.03.2015

New Celtic-Plus project explores cost-effective ultra-broadband access based on G.fast standard.

Celtic-Plus is launching a 4.4 million euro project to explore multiple-gigabit copper access based on G.fast, a digital subscriber line (DSL) standard for the local loop. The Gigabits Over the Legacy Drop (GOLD) project will initiate the planned second version of the G.fast standard and boost its usability in dense city areas. The goal is to develop alternative backhauling options based on copper instead of fibre. This could lead to significant cost reductions in the network, particularly within dense urban areas in Europe.


G.fast application cases

TNO


Logo of Celtic-Plus project GOLD

GOLD project consortium

GOLD builds on the success of the completed HFCC/G.fast project, which demonstrated throughput of nearly 1Gbps per copper pair at 100 meters, and up to 170Mbps per copper pair at 480 meters, on a 16 pair standard cable. This is as much as an order of magnitude improvement compared to existing DSL technologies. GOLD will push G.fast even further to multiple-gigabit copper access rates by exploring a second version of the G.fast standard working at higher frequencies and preparing the ground for fifth generation fixed broadband.

“G.fast is quickly turning into a key technology for European operators,” said Trevor Linney, head of Access Network Research at BT. “During our lab evaluations, it has outperformed our expectations in terms of bitrate and reach for fixed line subscribers. Now, we have formed the GOLD project to drive further improvements in the capabilities of this exciting technology, working closely with vendors and other global operators.”

... more about:
»COPPER »DSL »Drop »EUREKA »Gigabits »Legacy »TNO »dense »pair »semiconductors

G.fast is the ideal technology for maximizing the value of existing copper infrastructure. Currently fibre roll-out is very expensive and therefore roll-outs are not happening on a large scale in the access network. G.fast bridges this gap by providing high-speed broadband over the existing copper cables.

During the HFCC/G.fast project, lab trials were performed by BT, Orange, Telefonica and TNO. In summer 2015, BT will start G.fast pilots in two UK cities, Huntingdon and Gosforth, with around 4,000 business and home connections.

About the GOLD Celtic-Plus Project:

The 4.4 million euro Celtic-Plus project GOLD (Gigabits Over the Legacy Drop) will explore multiple-gigabit copper access based on the DSL standard G.fast. GOLD focuses on the planned second version of the G.fast standard with the aim of boosting the usability of G.fast in dense city areas and thus develop alternative, cost-effective backhauling options based on copper instead of fibre.

The GOLD consortium consists of 12 companies from 8 countries including service providers BT (UK), Orange SA (FR); equipment vendors ADTRAN GmbH (DE), Alcatel-Lucent (BE), Ericsson AB (SE), Sagemcom (FR), and Telnet Redes Inteligentes SA (ES); chip vendors Marvell Semiconductors (ES) and Sckipio Technologies (IL); and researchers at Lund University (SE) and TNO (NL). The project is coordinated by Lund University.

The 3-year project started in January 2015 and will run until December 2017.

Further information will soon be available on the project website at www.4gbb.eu.

About the HFCC/G.fast Celtic-Plus Project:

The 4.2 Million euro Celtic-Plus project HFCC/G.fast (Hybrid Fibre-Copper connectivity using G.fast) advanced the emerging digital subscriber line (DSL) technology by developing innovations ranging from channel measurements and transceiver designs to novel system architectures and use cases. This has pushed the standardization process as well as the broadband deployment in Europe.

The consortium consisted of 14 organizations from nine countries and included Ericsson AB (SE), ADTRAN GmbH (DE), BT (UK), Dension Broadband Systems Kft (HU), EUR AB (SE), Orange SA (FR), Lund University (SE), Marvell Semiconductors (ES), Fundacion Tecnalia Research and Innovation (ES), Telefonica I+D (ES), Telnet Redes Inteligentes SA (ES), TNO (NL), FTW Telecommunications Research Center Vienna (AU) and Sckipio Technologies (IL).

The project started in January 2013 and completed its work in February 2015. Results are available at www.4gbb.eu

About Celtic-Plus:

Celtic-Plus is an industry-driven European research initiative to define, perform and finance through public and private funding common research projects in the area of telecommunications, new media, future Internet, and applications & services focusing on a new "Smart Connected World" paradigm. Celtic-Plus is a EUREKA ICT cluster and belongs to the inter-governmental EUREKA network.

www.celticplus.eu

Celtic Office, c/o Eurescom GmbH, Wieblinger Weg 19/4, D-69123 Heidelberg, Germany

Press contacts:

Celtic-Plus: Milon Gupta, phone: +49 6221 989-121, e-mail: gupta@celticplus.eu

GOLD project: Per Ödling, phone: +46 46 222 4941, e-mail: per.odling@eit.lth.se

BT: Press office, phone: +44 20 7356 5369, e-mail: Newsroom@bt.com

Weitere Informationen:

https://www.celticplus.eu

Milon Gupta | idw - Informationsdienst Wissenschaft

Further reports about: COPPER DSL Drop EUREKA Gigabits Legacy TNO dense pair semiconductors

More articles from Information Technology:

nachricht Terahertz spectroscopy goes nano
20.10.2017 | Brown University

nachricht New software speeds origami structure designs
12.10.2017 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>