Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Multi-gigabit access via copper

23.03.2015

New Celtic-Plus project explores cost-effective ultra-broadband access based on G.fast standard.

Celtic-Plus is launching a 4.4 million euro project to explore multiple-gigabit copper access based on G.fast, a digital subscriber line (DSL) standard for the local loop. The Gigabits Over the Legacy Drop (GOLD) project will initiate the planned second version of the G.fast standard and boost its usability in dense city areas. The goal is to develop alternative backhauling options based on copper instead of fibre. This could lead to significant cost reductions in the network, particularly within dense urban areas in Europe.


G.fast application cases

TNO


Logo of Celtic-Plus project GOLD

GOLD project consortium

GOLD builds on the success of the completed HFCC/G.fast project, which demonstrated throughput of nearly 1Gbps per copper pair at 100 meters, and up to 170Mbps per copper pair at 480 meters, on a 16 pair standard cable. This is as much as an order of magnitude improvement compared to existing DSL technologies. GOLD will push G.fast even further to multiple-gigabit copper access rates by exploring a second version of the G.fast standard working at higher frequencies and preparing the ground for fifth generation fixed broadband.

“G.fast is quickly turning into a key technology for European operators,” said Trevor Linney, head of Access Network Research at BT. “During our lab evaluations, it has outperformed our expectations in terms of bitrate and reach for fixed line subscribers. Now, we have formed the GOLD project to drive further improvements in the capabilities of this exciting technology, working closely with vendors and other global operators.”

... more about:
»COPPER »DSL »Drop »EUREKA »Gigabits »Legacy »TNO »dense »pair »semiconductors

G.fast is the ideal technology for maximizing the value of existing copper infrastructure. Currently fibre roll-out is very expensive and therefore roll-outs are not happening on a large scale in the access network. G.fast bridges this gap by providing high-speed broadband over the existing copper cables.

During the HFCC/G.fast project, lab trials were performed by BT, Orange, Telefonica and TNO. In summer 2015, BT will start G.fast pilots in two UK cities, Huntingdon and Gosforth, with around 4,000 business and home connections.

About the GOLD Celtic-Plus Project:

The 4.4 million euro Celtic-Plus project GOLD (Gigabits Over the Legacy Drop) will explore multiple-gigabit copper access based on the DSL standard G.fast. GOLD focuses on the planned second version of the G.fast standard with the aim of boosting the usability of G.fast in dense city areas and thus develop alternative, cost-effective backhauling options based on copper instead of fibre.

The GOLD consortium consists of 12 companies from 8 countries including service providers BT (UK), Orange SA (FR); equipment vendors ADTRAN GmbH (DE), Alcatel-Lucent (BE), Ericsson AB (SE), Sagemcom (FR), and Telnet Redes Inteligentes SA (ES); chip vendors Marvell Semiconductors (ES) and Sckipio Technologies (IL); and researchers at Lund University (SE) and TNO (NL). The project is coordinated by Lund University.

The 3-year project started in January 2015 and will run until December 2017.

Further information will soon be available on the project website at www.4gbb.eu.

About the HFCC/G.fast Celtic-Plus Project:

The 4.2 Million euro Celtic-Plus project HFCC/G.fast (Hybrid Fibre-Copper connectivity using G.fast) advanced the emerging digital subscriber line (DSL) technology by developing innovations ranging from channel measurements and transceiver designs to novel system architectures and use cases. This has pushed the standardization process as well as the broadband deployment in Europe.

The consortium consisted of 14 organizations from nine countries and included Ericsson AB (SE), ADTRAN GmbH (DE), BT (UK), Dension Broadband Systems Kft (HU), EUR AB (SE), Orange SA (FR), Lund University (SE), Marvell Semiconductors (ES), Fundacion Tecnalia Research and Innovation (ES), Telefonica I+D (ES), Telnet Redes Inteligentes SA (ES), TNO (NL), FTW Telecommunications Research Center Vienna (AU) and Sckipio Technologies (IL).

The project started in January 2013 and completed its work in February 2015. Results are available at www.4gbb.eu

About Celtic-Plus:

Celtic-Plus is an industry-driven European research initiative to define, perform and finance through public and private funding common research projects in the area of telecommunications, new media, future Internet, and applications & services focusing on a new "Smart Connected World" paradigm. Celtic-Plus is a EUREKA ICT cluster and belongs to the inter-governmental EUREKA network.

www.celticplus.eu

Celtic Office, c/o Eurescom GmbH, Wieblinger Weg 19/4, D-69123 Heidelberg, Germany

Press contacts:

Celtic-Plus: Milon Gupta, phone: +49 6221 989-121, e-mail: gupta@celticplus.eu

GOLD project: Per Ödling, phone: +46 46 222 4941, e-mail: per.odling@eit.lth.se

BT: Press office, phone: +44 20 7356 5369, e-mail: Newsroom@bt.com

Weitere Informationen:

https://www.celticplus.eu

Milon Gupta | idw - Informationsdienst Wissenschaft

Further reports about: COPPER DSL Drop EUREKA Gigabits Legacy TNO dense pair semiconductors

More articles from Information Technology:

nachricht Rules for superconductivity mirrored in 'excitonic insulator'
08.12.2017 | Rice University

nachricht Smartphone case offers blood glucose monitoring on the go
08.12.2017 | University of California - San Diego

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

New research identifies how 3-D printed metals can be both strong and ductile

11.12.2017 | Physics and Astronomy

Scientists channel graphene to understand filtration and ion transport into cells

11.12.2017 | Materials Sciences

What makes corals sick?

11.12.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>