Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More speed, less interference

25.04.2014

A semi-analytical model can compute electromagnetic interference on an electronic circuit board ten times faster than existing commercial software

As electronic components on electronic circuit boards continue to shrink, problems of electromagnetic compatibility are arising. Such problems include unwanted ‘noise’ effects due to electromagnetic interference and susceptibility.

“Electromagnetic interference is a critical problem for the electronics industry,” explains Xian-Ke Gao from the A*STAR Institute of High Performance Computing in Singapore. “Engineers are keen to understand how the electronic circuits react. However, it is difficult to measure such effects experimentally, because disassembling the device would affect the physical testing.”

To address this problem, the electronics industry has developed a suite of computer modeling tools, but these are cumbersome and require a lot of computing power. Now, Gao and colleagues have developed a computer model that is able to solve such problems more than ten times faster than existing models1.

Fairly coarse models are typically used to model electromagnetic interference effects on electronic circuit boards (see image). To do this, the device is divided into a grid of small cubes, and the electromagnetic fields to and from each cube are modeled individually. This approach requires a lot of computing power, especially if the grid size is small, but it has the advantage that it is flexible and can be adapted to various geometries. Except for interference effects, the same computer models can be applied to calculate electromagnetic fields for a range of electrical devices other than circuit boards.

A more targeted and efficient approach is required to measure interference effects. Researchers use mathematical equations to describe the electrical currents in a conducting wire. The physics of these transmission-line equations are well understood and, once adapted to the unique properties of circuit boards, are far easier to solve by a computer algorithm than the other, coarser modeling.

The first tests of the software package developed by the A*STAR researchers, which is based on the transmission-line equations, reliably solved a number of standard problems for electronic circuits. Compared to commercial models, the new software achieved very good agreement, especially for the main region of interest — frequencies below one gigahertz.

Speed, however, is the key advantage of using the software. Whereas commercial software requires more than two hours of computing on a regular laptop, the A*STAR software package needed less than ten minutes for the same task, explains Gao. “Our computational problem-solving kit can shorten electromagnetic interference trouble-shooting in the product design phase and therefore translates into time and cost savings for the industry.”

The A*STAR-affiliated researchers contributing to this research are from the Institute of High Performance Computing 

Journal information

Gao, X.-K., Zhao, H., Li, E.-P. & Hoefer, W. J. R. Radiated electromagnetic immunity analysis of flex cable with ground plane using transmission line equations. IEEE Transactions on Electromagnetic Compatibility 55, 875–882 (2013).

A*STAR Research | Research SEA News
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

More articles from Information Technology:

nachricht A novel hybrid UAV that may change the way people operate drones
28.03.2017 | Science China Press

nachricht Timing a space laser with a NASA-style stopwatch
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>