Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More objective than human hearing

03.04.2017

In industrial production, the testing of machines and products by means of acoustic signals still takes a niche role. At the Hannover Messe 2017, Fraunhofer is exhibiting a cognitive system that detects erroneous sounds more objectively than the human ear (Hall 2, Booth C16/C22). The technology has successfully passed the initial practical tests and there detected up to 99 percent of the errors.

In industrial production, it is crucial that the machines work and that the product does not have any defects. The production process is therefore continuously monitored. By humans, but also by more and more sensors, cameras, software and hardware.


The Fraunhofer IDMT offers procedures for the end-of-line inspection of car parts, such as motors for seats, for the sake of automated quality analysis by means of airborne sound measurement.

In most cases, machine-based automated testing is based on visual or physical criteria. Only people also use their ears naturally: if something sounds unusual, a person switches the machine off for safety. The problem is this: Everyone perceives noises somewhat differently. Whether something goes wrong is therefore rather a subjective feeling and presents an increased susceptibility to error.

Training with millions of data records

The Fraunhofer Institute for Digital Media Technology IDMT develops cognitive systems that accurately identify faults based on acoustic signals. The technological approach combines intelligent acoustic measurement technology and signal analysis, machine learning as well as data-safe, flexible data storage.

"We integrate the intelligence of listening into the industrial condition control of machines and automated test systems for products," explains Steffen Holly of IDMT’s "Industrial Media Applications" business unit. Once they have been trained, cognitive systems can hear more objectively than human hearing: instead of two ears, they have, so to speak, many thousands of them at their disposal, in the form of millions of neutral data records. Initial pilot projects with industry are already under way. The researchers have been able to detect up to 99 percent of the defects purely acoustically.

Assigning sounds distinctly

The scientists identify possible sources of noises and analyze their causes, create a noise model of the environment, and focus their microphones there. "It is ideal to simulate the human ear: it receives sounds through the air," says Holly. From the total signal, the system calculates out background sounds, such as voices or from a forklift driving by. This is then repeatedly compared with previously determined, laboratory-pure reference noise. With the help of artificial neural networks, the scientists are gradually developing algorithms that are able to detect noises which occur from errors.

"The cleaner the acoustic signal is, the better the cognitive system recognizes deviations," Holly explains. The technology is so sensitive that it also displays nuances in error intensity and manages complex tasks. An example from the field of automotive production: In modern car seats, a large number of individual motors are installed, with the aid of which the driver can adjust his seat individually. The design of the motors is not the same, their noises are different and they are installed in different places. "In a pilot project with an automotive supplier, our acoustic monitoring system was able to detect all of the error sources perfectly", Holly reports.

Flexible, secure data storage in the cloud

The Fraunhofer researchers are able to ensure the data security of the collected acoustic signals through user authorizations as well as rights and identity management. An example is the decoupling of real and virtual identities in order to not violate user rights when evaluating the data by different persons. Machines and test systems are usually installed in the production line. The researchers store their acoustic data records in a secure cloud. "We can react very flexibly to changes in the production process and adjust our cognitive system accordingly," Holly mentions as an additional advantage.

Weitere Informationen:

https://www.fraunhofer.de/en/press/research-news/2017/april/more-objective-than-...

Julia Hallebach | Fraunhofer Research News

More articles from Information Technology:

nachricht Cloud technology: Dynamic certificates make cloud service providers more secure
15.01.2018 | Technische Universität München

nachricht New discovery could improve brain-like memory and computing
10.01.2018 | University of Minnesota

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

White graphene makes ceramics multifunctional

16.01.2018 | Materials Sciences

Breaking bad metals with neutrons

16.01.2018 | Materials Sciences

ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records

16.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>