Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More objective than human hearing

03.04.2017

In industrial production, the testing of machines and products by means of acoustic signals still takes a niche role. At the Hannover Messe 2017, Fraunhofer is exhibiting a cognitive system that detects erroneous sounds more objectively than the human ear (Hall 2, Booth C16/C22). The technology has successfully passed the initial practical tests and there detected up to 99 percent of the errors.

In industrial production, it is crucial that the machines work and that the product does not have any defects. The production process is therefore continuously monitored. By humans, but also by more and more sensors, cameras, software and hardware.


The Fraunhofer IDMT offers procedures for the end-of-line inspection of car parts, such as motors for seats, for the sake of automated quality analysis by means of airborne sound measurement.

In most cases, machine-based automated testing is based on visual or physical criteria. Only people also use their ears naturally: if something sounds unusual, a person switches the machine off for safety. The problem is this: Everyone perceives noises somewhat differently. Whether something goes wrong is therefore rather a subjective feeling and presents an increased susceptibility to error.

Training with millions of data records

The Fraunhofer Institute for Digital Media Technology IDMT develops cognitive systems that accurately identify faults based on acoustic signals. The technological approach combines intelligent acoustic measurement technology and signal analysis, machine learning as well as data-safe, flexible data storage.

"We integrate the intelligence of listening into the industrial condition control of machines and automated test systems for products," explains Steffen Holly of IDMT’s "Industrial Media Applications" business unit. Once they have been trained, cognitive systems can hear more objectively than human hearing: instead of two ears, they have, so to speak, many thousands of them at their disposal, in the form of millions of neutral data records. Initial pilot projects with industry are already under way. The researchers have been able to detect up to 99 percent of the defects purely acoustically.

Assigning sounds distinctly

The scientists identify possible sources of noises and analyze their causes, create a noise model of the environment, and focus their microphones there. "It is ideal to simulate the human ear: it receives sounds through the air," says Holly. From the total signal, the system calculates out background sounds, such as voices or from a forklift driving by. This is then repeatedly compared with previously determined, laboratory-pure reference noise. With the help of artificial neural networks, the scientists are gradually developing algorithms that are able to detect noises which occur from errors.

"The cleaner the acoustic signal is, the better the cognitive system recognizes deviations," Holly explains. The technology is so sensitive that it also displays nuances in error intensity and manages complex tasks. An example from the field of automotive production: In modern car seats, a large number of individual motors are installed, with the aid of which the driver can adjust his seat individually. The design of the motors is not the same, their noises are different and they are installed in different places. "In a pilot project with an automotive supplier, our acoustic monitoring system was able to detect all of the error sources perfectly", Holly reports.

Flexible, secure data storage in the cloud

The Fraunhofer researchers are able to ensure the data security of the collected acoustic signals through user authorizations as well as rights and identity management. An example is the decoupling of real and virtual identities in order to not violate user rights when evaluating the data by different persons. Machines and test systems are usually installed in the production line. The researchers store their acoustic data records in a secure cloud. "We can react very flexibly to changes in the production process and adjust our cognitive system accordingly," Holly mentions as an additional advantage.

Weitere Informationen:

https://www.fraunhofer.de/en/press/research-news/2017/april/more-objective-than-...

Julia Hallebach | Fraunhofer Research News

More articles from Information Technology:

nachricht NASA CubeSat to test miniaturized weather satellite technology
10.11.2017 | NASA/Goddard Space Flight Center

nachricht New approach uses light instead of robots to assemble electronic components
08.11.2017 | The Optical Society

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>