Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular Quantum Bit with Long Coherence Time Discovered in Stuttgart

21.10.2014

Long-lived Qubits at room temperature

From more efficient database queries to the cracking of today's reliable cryptographic systems: The development of a competitive quantum computer would mark the beginning of a new digital era. So far research is focused on finding suitable processing units, the so-called quantum bits (qubits). In contrast to classical bits, they cannot only be in the states 0 and 1, but also in an arbitrary superposition of those two states. A prerequisite for useful computations is a long coherence time (life time) of the superposition states. Prof. Joris van Slageren´s research group at the Institute of Physical Chemistry, University of Stuttgart recently published results on a coordination compound with exceptionally long coherence times over an unusually wide temperature range in Nature Communications.


Qubit structure (top right) and three-dimensional representation of coherence decay curves.

University of Stuttgart

Bader, K. et al. Room temperature quantum coherence in a potential molecular qubit. Nat. Commun. 5:5304 doi: 10.1038/ncomms6304 (2014).

Recently, many different systems have been proposed for the physical implementation of a quantum bit. Very promising proposals utilize the electron spin in magnetic molecules.

Of these, coordination compounds consisting of a metal ion with organic groups (ligands) offer the advantage of the realization of tailor-made physical properties via convenient chemical manipulations.

A well-known limiting factor for the life time of the superposition state is the presence of adjacent nuclear spins, as they generate stray fields. Based on this knowledge the Van Slageren group identified a compound containing very few nuclear spins in vicinity of the electron spin as potential candidate for showing long coherence times.

The compound consists of a central copper ion incorporated in an organic shell with only few nuclear spin carrying elements. Additionally, the ligand shell is very flat and rigid which enables the compound to form stable columns in the solid state.

The measurements of Van Slageren´s research group proved that these design-criteria indeed enable exceptionally long coherence times. At low temperatures (7 Kelvin) a coherence time of 68 microseconds was observed. This substantially exceeds previous reported values for molecular compounds, which were around a few microseconds.
Astonishingly, the Stuttgart researchers were able to detect coherence over an unusually wide temperature range. So far molecular qubits only showed coherence at very low temperatures, whereas the introduced compound´s coherence is room-temperature stable. With this property, the realization of energy efficient quantum computers with low operating expenses moves closer.

The next challenge on the way towards a working quantum computer is the structured deposition of the compound on surfaces, which will be tackled now by the Stuttgart researchers. “In order to construct a quantum computer it´s not only necessary to identify compounds with long coherence times, but also to find a possibility for selectively addressing them” says Ph.D.-student Katharina Bader.

The work is part of her doctoral dissertation, which is supported by “Fonds der Chemischen Industrie”. The measurements were performed in cooperation with Goethe University Frankfurt and were financially supported by “Deutsche Forschungsgemeinschaft” and “Center for Integrated Quantum Science and Technology (Stuttgart/Ulm)”.

Further Information:
Prof. Joris van Slageren, Universität Stuttgart, Institut für Physikalische Chemie, Tel. 0711/685-64380,
E-Mail: slageren (at) ipc.uni-stuttgart.de
Andrea Mayer-Grenu, Universität Stuttgart, Abt. Hochschulkommunikation, Tel. 0711/685-82176,
E-Mail: andrea.mayer-grenu (at) hkom.uni-stuttgart.de

Andrea Mayer-Grenu | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-stuttgart.de/

More articles from Information Technology:

nachricht Researchers achieve HD video streaming at 10,000 times lower power
20.04.2018 | University of Washington

nachricht An AI that makes road maps from aerial images
18.04.2018 | Massachusetts Institute of Technology, CSAIL

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>