Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular Quantum Bit with Long Coherence Time Discovered in Stuttgart

21.10.2014

Long-lived Qubits at room temperature

From more efficient database queries to the cracking of today's reliable cryptographic systems: The development of a competitive quantum computer would mark the beginning of a new digital era. So far research is focused on finding suitable processing units, the so-called quantum bits (qubits). In contrast to classical bits, they cannot only be in the states 0 and 1, but also in an arbitrary superposition of those two states. A prerequisite for useful computations is a long coherence time (life time) of the superposition states. Prof. Joris van Slageren´s research group at the Institute of Physical Chemistry, University of Stuttgart recently published results on a coordination compound with exceptionally long coherence times over an unusually wide temperature range in Nature Communications.


Qubit structure (top right) and three-dimensional representation of coherence decay curves.

University of Stuttgart

Bader, K. et al. Room temperature quantum coherence in a potential molecular qubit. Nat. Commun. 5:5304 doi: 10.1038/ncomms6304 (2014).

Recently, many different systems have been proposed for the physical implementation of a quantum bit. Very promising proposals utilize the electron spin in magnetic molecules.

Of these, coordination compounds consisting of a metal ion with organic groups (ligands) offer the advantage of the realization of tailor-made physical properties via convenient chemical manipulations.

A well-known limiting factor for the life time of the superposition state is the presence of adjacent nuclear spins, as they generate stray fields. Based on this knowledge the Van Slageren group identified a compound containing very few nuclear spins in vicinity of the electron spin as potential candidate for showing long coherence times.

The compound consists of a central copper ion incorporated in an organic shell with only few nuclear spin carrying elements. Additionally, the ligand shell is very flat and rigid which enables the compound to form stable columns in the solid state.

The measurements of Van Slageren´s research group proved that these design-criteria indeed enable exceptionally long coherence times. At low temperatures (7 Kelvin) a coherence time of 68 microseconds was observed. This substantially exceeds previous reported values for molecular compounds, which were around a few microseconds.
Astonishingly, the Stuttgart researchers were able to detect coherence over an unusually wide temperature range. So far molecular qubits only showed coherence at very low temperatures, whereas the introduced compound´s coherence is room-temperature stable. With this property, the realization of energy efficient quantum computers with low operating expenses moves closer.

The next challenge on the way towards a working quantum computer is the structured deposition of the compound on surfaces, which will be tackled now by the Stuttgart researchers. “In order to construct a quantum computer it´s not only necessary to identify compounds with long coherence times, but also to find a possibility for selectively addressing them” says Ph.D.-student Katharina Bader.

The work is part of her doctoral dissertation, which is supported by “Fonds der Chemischen Industrie”. The measurements were performed in cooperation with Goethe University Frankfurt and were financially supported by “Deutsche Forschungsgemeinschaft” and “Center for Integrated Quantum Science and Technology (Stuttgart/Ulm)”.

Further Information:
Prof. Joris van Slageren, Universität Stuttgart, Institut für Physikalische Chemie, Tel. 0711/685-64380,
E-Mail: slageren (at) ipc.uni-stuttgart.de
Andrea Mayer-Grenu, Universität Stuttgart, Abt. Hochschulkommunikation, Tel. 0711/685-82176,
E-Mail: andrea.mayer-grenu (at) hkom.uni-stuttgart.de

Andrea Mayer-Grenu | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-stuttgart.de/

More articles from Information Technology:

nachricht A novel hybrid UAV that may change the way people operate drones
28.03.2017 | Science China Press

nachricht Timing a space laser with a NASA-style stopwatch
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>