Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular motor-powered biocomputers

20.03.2017

Launch of a five-year, 6.1 M€ EU-Horizon 2020 project that aims to build a new type of powerful computer based on biomolecules, TU Dresden is participating

Crashing computers or smartphones and software security holes that allow hackers to steal millions of passwords could be prevented if it were possible to design and verify error-free software. Unfortunately, to date, this is a problem that neither engineers nor supercomputers can solve.


Network-based biocomputation.

Till Korten, Cornelia Kowol

One reason is that the computing power required to verify the correct function of a many types of software scales exponentially with the size of the program, so that processing speed, energy consumption and cooling of conventional microelectronic processors prevent current computers from verifying large programs.

The recently launched research project aims to develop a biocomputer that can overcome the two main obstacles faced by today’s supercomputers: first, they use vast amounts of electric power – so much that the development of more powerful computers is hampered primarily by limitations in the ability to cool the processors. Second, they cannot do two things at the same time.

The EU now funds a project that will develop a computer based on highly efficient molecular motors that will use a fraction of the energy of existing computers, and that can tackle problems where many solutions need to be explored simultaneously.

The potential impact of the project results is not limited to the design of error-free software: “Practically all really interesting mathematical problems of our time cannot be computed efficiently with our current computer technology.” says Dan V. Nicolau, Ph.D. M.D., from the UK-based enterprise Molecular Sense, who had the original idea of using biomolecular motors as computers.

This is the limit that the new project aims to push by using biomolecular motors as computing units: The idea is that biomolecular machines, each only a few billionth of a meter (nanometers) in size, can solve problems by moving through a nanofabricated network of channels designed to represent a mathematical algorithm (see fig. 1); an approach the scientists in the project termed “network-based biocomputation”.

Whenever the biomolecules reach a junction in the network, they either add a number to the sum they are calculating or leave it out. That way, each biomolecule acts as a tiny computer with processor and memory. While an individual biomolecule is much slower than a current computer, they are self-assembling so that they can be used in large numbers, quickly adding up their computing power. The researchers have demonstrated that this works in a recent publication in the Proceedings of the National Academy of the USA (PNAS).

"We are using molecular motors of the cell that have been optimized by a billion years of evolution to be highly energy efficient nanomachines.", says Prof. Stefan Diez who is heading the participating TU Dresden research team, “and the biological computing units can multiply themselves to adapt to the difficulty of the mathematical problem.” adds Dr. Till Korten from TU Dresden, co-coordinator of the Bio4Comp project and equally contributing first author of the PNAS publication.

The research consortium will focus on developing the technology required to scale up network-based biocomputers to a point at which they are able to compete with other alternative computing approaches such as DNA computing and quantum computing. In the process, they aim to attract a larger scientific and economic community that will focus on developing the technology into a viable alternative computing approach.

To do so, they have received 6.1 Million € from the Future & Emerging Technologies (FET) programme of the EU to run a highly interdisciplinary research project touching mathematics, biology, engineering, and computation. Of this funding, 1.1 million € will go to the research group of Stefan Diez, Professor for BioNanoTools at B CUBE, a TU Dresden research institute focusing on Molecular Bioengineering, and fellow at the Max Planck Institute of Cell Biology and Genetics (MPI-CBG) Dresden.

The role of the group will be to modify the properties of motor proteins, such as kinesin, in order to optimize them for biocomputation, as well as to integrate them into nanofabricated devices. This work will strongly benefit from synergies and collaborations with the Center for Advancing Electronics Dresden (cfaed), one of the current Clusters of Excellence at TU Dresden.

“Optimizing the motors not only gives us ideal tools for nanotechnology, but at the same time we learn a great deal about how they work and what they do inside the cell.”, Diez says. These insights will be useful beyond the specific project goals, for example to elucidate the roles of these proteins in serious diseases such as cancer and dementia.

The project Bio4Comp (2017-2021) is funded by Horizon 2020, the EU framework program for Research and Innovation under under Grant Agreement No 732482. More information can be found on the research consortium’s webpage: www.bio4comp.eu.

Media Inquiries:
Stefan Diez, Professor for BioNanoTools
B CUBE – Center for Molecular Bioengineering
Technische Universität Dresden, Dresden, Germany
Tel.: +49 (0) 351 463-43010
stefan.diez@tu-dresden.de
http://www.tu-dresden.de/bcube

Contact list of project partners:

Partner 1: Lund University, Lund, Sweden
Heiner Linke, Professor of Nanophysics; Director of NanoLund
Tel.: +46 (0) 46 222 4245
heiner.linke@ftf.lth.se
Kristina Lindgärde, Pressansvarig vid Kommunikation och Samverkan, LTH
Tel.: +46 (0) 46 222 0769
kristina.lindgarde@kansli.lth.se
http://www.nano.lu.se/

Partner 2: Linné-University Kalmar, Kalmar, Sweden
Alf Månsson, professor i fysiologi
Tel.: +46 (0) 70 886 6243
Annika Sand, pressansvarig
Tel.: +46 (0) 76 830 0105
https://lnu.se/en/research/searchresearch/the-molecular-motor-and-bionano-group/

Partner 3: Molecular Sense Ltd., Oxford, U.K.
Dan V. Nicolau, PhD. MD.
https://molecularsense.com/

Partner 4: Bar-Ilan University, Ramat Gan, Israel
Dr. Hillel Kugler
Tel.: +972 (0) 3 7384437
kugler.hillel@biu.ac.il
http://www.eng.biu.ac.il/hillelk/

Partner 5: Fraunhofer-Gesellschaft zur Förderung der angewandten Wissenschaften e.V.

Prof. Stefan E. Schulz
Tel.: +49 (0) 371 45001-232
stefan.schulz@enas.fraunhofer.de
https://www.fraunhofer.de/

Weitere Informationen:

To PNAS paper: http://www.pnas.org/content/113/10/2591.full?sid=5d9e45c4-6338-461e-9c93-a74c5ca...
To web-site: http://www.bio4comp.eu

Kim-Astrid Magister | idw - Informationsdienst Wissenschaft

Further reports about: Bioengineering PNAS Technische Universität computing power proteins

More articles from Information Technology:

nachricht Equipping form with function
23.06.2017 | Institute of Science and Technology Austria

nachricht Can we see monkeys from space? Emerging technologies to map biodiversity
23.06.2017 | Forschungsverbund Berlin e.V.

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

New 3-D model predicts best planting practices for farmers

26.06.2017 | Agricultural and Forestry Science

New research reveals impact of seismic surveys on zooplankton

26.06.2017 | Life Sciences

Correct connections are crucial

26.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>