Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Model aims to reduce disaster toll on city's social, economic fabric

29.09.2010
Researchers have created a computer model that predicts how a disaster's impact on critical infrastructure would affect a city's social and economic fabric, a potential tool to help reduce the severity of impacts, manage the aftermath of catastrophe and fortify infrastructure against future disasters.

"The model works for any type of disaster that influences the infrastructure," said Makarand Hastak, head of construction engineering and management and a professor of civil engineering at Purdue University. "If we can identify in advance the most vulnerable elements of the critical infrastructure, then we can take proactive measures to reinforce them or at least find alternatives."

The model simulates how a disaster affects elements such as bridges, roads, municipal water and wastewater treatment services, along with vital economic and social components such as employers, hospitals, schools and churches.

"It can be most effectively used as a planning tool before a disaster because it enables you to put preventative measures in place," said Hastak, who is working with doctoral student Abhijeet Deshmukh. "But it can also be used while the disaster is unfolding to anticipate what will happen next and make decisions about where to evacuate and where to direct disaster relief, as well as after the disaster is over to assess the economic and social impacts."

The model was created by Eun Ho "Daniel" Oh, a former Purdue doctoral student who is a research specialist at the Korea Institute of Construction Technology in Seoul.

The researchers demonstrated their prototype on several cities, including Cedar Rapids, Iowa, which was hit by a devastating flood in the summer of 2008.

Findings on how to quantify impacts from disasters will be presented during the International Conference on Disaster Management on Nov 15 and 16 at the University of Hawaii at Manoa, Honolulu. The paper was written by Hastak, Oh, Deshmukh and J. Eric Dietz, director of the Purdue Homeland Security Institute and an associate professor of computer and information technology.

Related publications written by Deshmukh, Oh and Hastak, show how the model was used to study 2008 flood damage to infrastructure in St. Louis, Gulfport and Des Plaines, Ill., and Terre Haute, Ind.

Cedar Rapids, however, sustained the brunt of the disaster, which exceeded a 500-year flood, blocking access to the city's government center and overwhelming the Cedar River, which is vital for industry, commerce and transportation.

"Cedar Rapids is a good case study because it relies on a major river," Hastak said.

The research was funded by the National Science Foundation's Infrastructure Management and Extreme Events program. The simulation model is called a "disaster impact mitigation support system."

"The model helps you identify the most vulnerable parts of the infrastructure so that a community can target spending in preparing for a disaster," Deshmukh said. "For electricity, you could have generators; you could have alternatives for water or wastewater; for transportation and the supply chain, you could have a warehouse that stores products away from the river."

A report using the method to document infrastructure damage caused by the Cedar Rapids flood was completed in 2009.

Writer: Emil Venere, (765) 494-4709, venere@purdue.edu

Sources: Makarand Hastak, 765-494-0641, hastak@purdue.edu

Abhijeet Deshmukh, adeshmuk@purdue.edu

Emil Venere | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Information Technology:

nachricht New silicon structure opens the gate to quantum computers
12.12.2017 | Princeton University

nachricht PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems
11.12.2017 | Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration IZM

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>