Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Model aims to reduce disaster toll on city's social, economic fabric

29.09.2010
Researchers have created a computer model that predicts how a disaster's impact on critical infrastructure would affect a city's social and economic fabric, a potential tool to help reduce the severity of impacts, manage the aftermath of catastrophe and fortify infrastructure against future disasters.

"The model works for any type of disaster that influences the infrastructure," said Makarand Hastak, head of construction engineering and management and a professor of civil engineering at Purdue University. "If we can identify in advance the most vulnerable elements of the critical infrastructure, then we can take proactive measures to reinforce them or at least find alternatives."

The model simulates how a disaster affects elements such as bridges, roads, municipal water and wastewater treatment services, along with vital economic and social components such as employers, hospitals, schools and churches.

"It can be most effectively used as a planning tool before a disaster because it enables you to put preventative measures in place," said Hastak, who is working with doctoral student Abhijeet Deshmukh. "But it can also be used while the disaster is unfolding to anticipate what will happen next and make decisions about where to evacuate and where to direct disaster relief, as well as after the disaster is over to assess the economic and social impacts."

The model was created by Eun Ho "Daniel" Oh, a former Purdue doctoral student who is a research specialist at the Korea Institute of Construction Technology in Seoul.

The researchers demonstrated their prototype on several cities, including Cedar Rapids, Iowa, which was hit by a devastating flood in the summer of 2008.

Findings on how to quantify impacts from disasters will be presented during the International Conference on Disaster Management on Nov 15 and 16 at the University of Hawaii at Manoa, Honolulu. The paper was written by Hastak, Oh, Deshmukh and J. Eric Dietz, director of the Purdue Homeland Security Institute and an associate professor of computer and information technology.

Related publications written by Deshmukh, Oh and Hastak, show how the model was used to study 2008 flood damage to infrastructure in St. Louis, Gulfport and Des Plaines, Ill., and Terre Haute, Ind.

Cedar Rapids, however, sustained the brunt of the disaster, which exceeded a 500-year flood, blocking access to the city's government center and overwhelming the Cedar River, which is vital for industry, commerce and transportation.

"Cedar Rapids is a good case study because it relies on a major river," Hastak said.

The research was funded by the National Science Foundation's Infrastructure Management and Extreme Events program. The simulation model is called a "disaster impact mitigation support system."

"The model helps you identify the most vulnerable parts of the infrastructure so that a community can target spending in preparing for a disaster," Deshmukh said. "For electricity, you could have generators; you could have alternatives for water or wastewater; for transportation and the supply chain, you could have a warehouse that stores products away from the river."

A report using the method to document infrastructure damage caused by the Cedar Rapids flood was completed in 2009.

Writer: Emil Venere, (765) 494-4709, venere@purdue.edu

Sources: Makarand Hastak, 765-494-0641, hastak@purdue.edu

Abhijeet Deshmukh, adeshmuk@purdue.edu

Emil Venere | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Information Technology:

nachricht New technology enables 5-D imaging in live animals, humans
16.01.2017 | University of Southern California

nachricht Fraunhofer FIT announces CloudTeams collaborative software development platform – join it for free
10.01.2017 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>