Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Model aims to reduce disaster toll on city's social, economic fabric

29.09.2010
Researchers have created a computer model that predicts how a disaster's impact on critical infrastructure would affect a city's social and economic fabric, a potential tool to help reduce the severity of impacts, manage the aftermath of catastrophe and fortify infrastructure against future disasters.

"The model works for any type of disaster that influences the infrastructure," said Makarand Hastak, head of construction engineering and management and a professor of civil engineering at Purdue University. "If we can identify in advance the most vulnerable elements of the critical infrastructure, then we can take proactive measures to reinforce them or at least find alternatives."

The model simulates how a disaster affects elements such as bridges, roads, municipal water and wastewater treatment services, along with vital economic and social components such as employers, hospitals, schools and churches.

"It can be most effectively used as a planning tool before a disaster because it enables you to put preventative measures in place," said Hastak, who is working with doctoral student Abhijeet Deshmukh. "But it can also be used while the disaster is unfolding to anticipate what will happen next and make decisions about where to evacuate and where to direct disaster relief, as well as after the disaster is over to assess the economic and social impacts."

The model was created by Eun Ho "Daniel" Oh, a former Purdue doctoral student who is a research specialist at the Korea Institute of Construction Technology in Seoul.

The researchers demonstrated their prototype on several cities, including Cedar Rapids, Iowa, which was hit by a devastating flood in the summer of 2008.

Findings on how to quantify impacts from disasters will be presented during the International Conference on Disaster Management on Nov 15 and 16 at the University of Hawaii at Manoa, Honolulu. The paper was written by Hastak, Oh, Deshmukh and J. Eric Dietz, director of the Purdue Homeland Security Institute and an associate professor of computer and information technology.

Related publications written by Deshmukh, Oh and Hastak, show how the model was used to study 2008 flood damage to infrastructure in St. Louis, Gulfport and Des Plaines, Ill., and Terre Haute, Ind.

Cedar Rapids, however, sustained the brunt of the disaster, which exceeded a 500-year flood, blocking access to the city's government center and overwhelming the Cedar River, which is vital for industry, commerce and transportation.

"Cedar Rapids is a good case study because it relies on a major river," Hastak said.

The research was funded by the National Science Foundation's Infrastructure Management and Extreme Events program. The simulation model is called a "disaster impact mitigation support system."

"The model helps you identify the most vulnerable parts of the infrastructure so that a community can target spending in preparing for a disaster," Deshmukh said. "For electricity, you could have generators; you could have alternatives for water or wastewater; for transportation and the supply chain, you could have a warehouse that stores products away from the river."

A report using the method to document infrastructure damage caused by the Cedar Rapids flood was completed in 2009.

Writer: Emil Venere, (765) 494-4709, venere@purdue.edu

Sources: Makarand Hastak, 765-494-0641, hastak@purdue.edu

Abhijeet Deshmukh, adeshmuk@purdue.edu

Emil Venere | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Information Technology:

nachricht Cutting edge research for the industries of tomorrow – DFKI and NICT expand cooperation
21.03.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Molecular motor-powered biocomputers
20.03.2017 | Technische Universität Dresden

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>