Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mobile phone technology brings robot swarm to research labs

06.08.2008
A new low cost platform for swarm robotics research which makes it possible to produce robots for as little as £24 each will be presented tomorrow at the first European conference on Artificial Life which will be held in Winchester from 5-8 August.

The robots will be at a press preview of a special robot demonstration tomorrow Wednesday 6 August at 4.30pm.

At a presentation entitled Strategies for maintaining large robot communities on today, Alexis Johnson from the University of Southampton's School of Electronics and Computer Science (ECS) described how he and his fellow students developed a platform of 25 robots capable of more than two hours of autonomy and with sufficient code capacity and processing power to run complex algorithms. The other students were Stephen English, Jeffrey Gough, Robert Spanton and Joanna Sun.

The team employed motors normally used to vibrate mobile phones. These motors are designed to be attached to circuit boards in the standard manufacturing process---removing the need for manual assembly of the robots and bringing the cost of a swarm of robots within reach of a typical research project.

'This is truly exciting: now we can order robots from the same UK companies that regularly make circuit boards for our projects---for them it is just a circuit board they can mass-produce like any other, but actually it is a complete functional robot.' said Dr Klaus-Peter Zauner who teaches Biorobotics at ECS.

'This also poses important research questions: how can we maintain and control thousands of robots,’ he added. ‘The students have made first steps to answer this using software tricks inspired by the way bacteria exchange code for drug resistance.'

Swarm robotics platforms are used for the investigation of emergent behaviour. They permit the study of swarm behaviour by physical simulation: providing real world constraints and experimental scope unattainable in software simulation alone.

Long-term possible applications for swarm robotics are in earthquake scenarios, environmental monitoring, and the field of space science.

Helene Murphy | alfa
Further information:
http://www.soton.ac.uk
http://users.ecs.soton.ac.uk/kpz/tmp/robotswarm/

More articles from Information Technology:

nachricht Construction of practical quantum computers radically simplified
05.12.2016 | University of Sussex

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>