Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Who Are You? Mobile ID Devices Find Out Using NIST Guidelines

28.08.2009
A new publication that recommends best practices for the next generation of portable biometric acquisition devices—Mobile ID—has been published by the National Institute of Standards and Technology (NIST).

Devices that gather, process and transmit an individual’s biometric data—fingerprints, facial and iris images—for identification are proliferating.

Previous work on standards for these biometric devices has focused primarily on getting different stationary and desktop systems with hardwired processing pathways to work together in an interoperable manner. But a new generation of small, portable and versatile biometric devices are raising new issues for interoperability.

“The proliferation of smaller devices including advanced personal digital assistants (PDAs), ultra-portable personal computers and high-speed cellular networks has made portable biometric systems a reality,” computer scientist Shahram Orandi says. “While the portable systems have made leaps and bounds in terms of capability, there are still intrinsic limitations that must be factored into the big picture to ensure interoperability with the larger, more established environments such as desktop or large server-based systems.”

The new mobile biometric devices allow first responders, police, the military and criminal justice organizations to collect biometric data with a handheld device on a street corner or in a remote area and then wirelessly send it to be compared to other samples on watch lists and databases in near real-time. Identities can be determined quickly without having to take a subject to a central facility to collect his or her biometrics, which is not always possible.

Soldiers are beginning to use these devices to control access to secured areas, and first responders can use them to ensure that only approved workers are on-site during an incident or investigation.

Special Publication 500-280: Mobile ID Device Best Practice Recommendation Version 1 offers guidelines to help ensure that, if followed, mobile and stationary systems will work together. It was developed by NIST researchers working with first responders, criminal justice agencies, the military, industry and academia.

For example, most current law enforcement applications require capturing all 10 fingerprints from an individual. Desktop fingerprint scanners provide a large scanning area—a platen—that can capture all 10 fingers in a fast, three-step process. Most portable devices, however, have platens that are a fraction of the size of a desktop scanner. The Mobile ID best practices publication provides guidelines that allow for the capture of all 10 fingerprints on a scanner with a smaller platen using a two-fingers-at-a-time approach.

The publication is available at http://fingerprint.nist.gov/mobileid/MobileID-BPRS-20090825-V100.pdf.

Evelyn Brown | Newswise Science News
Further information:
http://www.nist.gov

More articles from Information Technology:

nachricht Switchable DNA mini-machines store information
26.06.2017 | Emory Health Sciences

nachricht Equipping form with function
23.06.2017 | Institute of Science and Technology Austria

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>