Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Miniaturizing memory — taking data storage to the molecular level

12.11.2008
Computers are getting smaller and smaller. And as hand-held devices — from mobile phones and cameras to music players and laptops — get more powerful, the race is on to develop memory formats that can satisfy the ever-growing demand for information storage on tiny formats.

Researchers at The University of Nottingham are now exploring ways of exploiting the unique properties of carbon nanotubes to create a cheap and compact memory cell that uses little power and writes information at high speeds.

Miniaturisation of computer devices involves continual improvement and shrinking of their basic element, the transistor. This process could soon reach its fundamental limit. As transistors approach nanoscales their operation is disrupted by quantum phenomena, such as electrons tunnelling through the barriers between wires.

Current memory technologies fall into three separate groups: dynamic random access memory (DRAM), which is the cheapest method; static random access memory (SRAM), which is the fastest memory — but both DRAM and SRAM require an external power supply to retain data; and flash memory, which is non-volatile — it does not need a power supply to retain data, but has slower read-write cycles than DRAM.

Carbon nanotubes — tubes made from rolled graphite sheets just one carbon atom thick — could provide the answer. If one nanotube sits inside another — slightly larger — one, the inner tube will ‘float’ within the outer, responding to electrostatic, van der Waals and capillary forces. Passing power through the nanotubes allows the inner tube to be pushed in and out of the outer tube. This telescoping action can either connect or disconnect the inner tube to an electrode, creating the ‘zero’ or ‘one’ states required to store information using binary code. When the power source is switched off, van der Waals force — which governs attraction between molecules — keeps the Inner tube in contact with the electrode. This makes the memory storage non-volatile, like Flash memory.

Researchers from across the scientific disciplines will be working on the ‘nanodevices for data storage’ project, which is funded by the Engineering and Physical Sciences Research Council. Colleagues from the Schools of Chemistry, Physics and Astronomy, Pharmacy and the Nottingham Nanotechnology and Nanoscience Centre will examine the methods and materials required to develop this new technology, as well as exploring other potential applications for the telescoping properties of carbon nanotubes. These include drug delivery to individual cells and nanothermometers which could differentiate between healthy and cancerous cells.

Dr Elena Bichoutskaia in the School of Chemistry at the University is leading the study. “The electronics industry is searching for a replacement of silicon-based technologies for data storage and computer memory,” she said. “Existing technologies, such as magnetic hard discs, cannot be used reliably at the sub-micrometre scale and will soon reach their fundamental physical limitations.

“In this project a new device for storing information will be developed, made entirely of carbon nanotubes and combining the speed and price of dynamic memory with the non-volatility of flash memory.”

Tara de Cozar | alfa
Further information:
http://www.nottingham.ac.uk
http://communications.nottingham.ac.uk/News/Article/Miniaturizing-memory-taking-data-storage-to-the-molecular-level.html

More articles from Information Technology:

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

nachricht Researchers catch extreme waves with higher-resolution modeling
15.02.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>