Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Micromirror Technology for Smartphones: The Next Big Thing

19.07.2013
A*STAR Institute of Microelectronics and OPUS Microsystems Collaborate to Advance Technology for Larger Screen Viewing Experience with Smartphones

1. With consumers using smartphones as a mobile entertainment centre, the ability to project photos and videos on any surface may soon become the norm. A*STAR Institute of Microelectronics (IME) and OPUS Microsystems Corporation, a Taiwan-based company specialising in Micro-Electro-Mechanical Systems (MEMS) scanning mirror devices, have signed an agreement to refine and develop a MEMS scanning mirror for smartphones applications. This would enable phones to project photos and videos on any surface, and with no constrains on the viewing screen size on the mobile devices.



2. This project, which signifies OPUS Microsystems’ first research partnership and project in Singapore, will build on IME’s extensive experience and knowledge in the field of MEMS. IME will lead the process design and development while OPUS Microsystems will contribute in the design of the scanning mirror.

3. MEMS scanning mirror, or micromirror technology, used in light-modulating devices, has undergone rapid technological progress over the years. This has led to the high video and image quality observed in high-definition televisions and more recently, digital cinemas. The market demand for such visual experience expresses itself in portable consumer electronics, such as tablets and mobile phones, in which gaming, photo and video applications have become integral. This technology is expected to be heavily incorporated into the next generation of smartphones.

4. To meet this demand, the two parties will work together on the development of an optimized MEMS scanning mirror which will enable a pico-projector for smartphones applications. Through the project, the two parties aim to achieve a slimmer and smaller MEMS micromirror with high performance offering a compact yet high-resolution pico-projector solution for smartphones. This would ultimately turn any surface into a display.

5. “We are delighted that OPUS Microsystems has chosen IME to be their partner for their first research project in Singapore. The interest in pico-projectors has gained traction in recent years, but the industry challenge remains in achieving a cutting edge technology that will allow the integration of a small-scale projector into smartphones while maintaining a high resolution output. It is an exciting research and development opportunity for IME to be part of such a project that will potentially lead to a technological breakthrough,” commented Prof. Dim-Lee Kwong, Executive Director of A*STAR IME.

6. “We are excited to be partnering with IME on this collaboration,” said Andrew Hung, President of OPUS Microsystems. “IME is a leading semiconductor research institute with vast experience in MEMS. We are confident that the alliance will enable OPUS Microsystems to achieve practical results that will meet its desired device requirements.”

Enclosed: Annex A – Illustration of How a MEMS Pico-Projector Works

Media Contact:

For A*STAR IME:
Chua Yi Fen
Tel: +65 6770 5378
Email: chuayif@ime.a-star.edu.sg
For OPUS Microsystems:
Connie Lin
Tel: +886 2 27998200 ext 271
Email: connie@opusmicro.com.tw
About A*STAR Institute of Microelectronics (IME)
The Institute of Microelectronics (IME) is a research institute of the Science and Engineering Research Council of the Agency for Science, Technology and Research (A*STAR). Positioned to bridge the R&D between academia and industry, IME's mission is to add value to Singapore's semiconductor industry by developing strategic competencies, innovative technologies and intellectual property; enabling enterprises to be technologically competitive; and cultivating a technology talent pool to inject new knowledge to the industry. Its key research areas are in integrated circuits design, advanced packaging, bioelectronics and medical devices, MEMS, nanoelectronics, and photonics. For more information about IME, please visit https://www.ime.a-star.edu.sg.
About Agency for Science, Technology and Research (A*STAR)
The Agency for Science, Technology and Research (A*STAR) is Singapore's lead public sector agency that fosters world-class scientific research and talent to drive economic growth and transform Singapore into a vibrant knowledge-based and innovation driven economy.

In line with its mission-oriented mandate, A*STAR spearheads research and development in fields that are essential to growing Singapore’s manufacturing sector and catalysing new growth industries. A*STAR supports these economic clusters by providing intellectual, human and industrial capital to its partners in industry.

A*STAR oversees 20 biomedical sciences and physical sciences and engineering research entities, located in Biopolis and Fusionopolis as well as their vicinity. These two R&D hubs house a bustling and diverse community of local and international research scientists and engineers from A*STAR’s research entities as well as a growing number of corporate laboratories.

Please visit www.a-star.edu.sg

About OPUS Microsystems Corporation
Opus Microsystems Corporation is a global leader in developing and delivering innovative mobile projection solutions based on MEMS and semiconductor technologies. Based in Taiwan, Opus Microsystems is devoted to provide energy efficient turnkey solution of MEMS pico-projectors including MEMS scanning mirror, scan display controller IC and optical module design to enable large projected image with high resolution and vivid color for smartphone and various applications. For more information, please visit http://www.opusmicro.com.

Bernadette Lee | Research asia research news
Further information:
http://www.a-star.edu.sg/
http://www.researchsea.com

More articles from Information Technology:

nachricht Cutting edge research for the industries of tomorrow – DFKI and NICT expand cooperation
21.03.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Molecular motor-powered biocomputers
20.03.2017 | Technische Universität Dresden

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>