Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Micromirror Technology for Smartphones: The Next Big Thing

19.07.2013
A*STAR Institute of Microelectronics and OPUS Microsystems Collaborate to Advance Technology for Larger Screen Viewing Experience with Smartphones

1. With consumers using smartphones as a mobile entertainment centre, the ability to project photos and videos on any surface may soon become the norm. A*STAR Institute of Microelectronics (IME) and OPUS Microsystems Corporation, a Taiwan-based company specialising in Micro-Electro-Mechanical Systems (MEMS) scanning mirror devices, have signed an agreement to refine and develop a MEMS scanning mirror for smartphones applications. This would enable phones to project photos and videos on any surface, and with no constrains on the viewing screen size on the mobile devices.



2. This project, which signifies OPUS Microsystems’ first research partnership and project in Singapore, will build on IME’s extensive experience and knowledge in the field of MEMS. IME will lead the process design and development while OPUS Microsystems will contribute in the design of the scanning mirror.

3. MEMS scanning mirror, or micromirror technology, used in light-modulating devices, has undergone rapid technological progress over the years. This has led to the high video and image quality observed in high-definition televisions and more recently, digital cinemas. The market demand for such visual experience expresses itself in portable consumer electronics, such as tablets and mobile phones, in which gaming, photo and video applications have become integral. This technology is expected to be heavily incorporated into the next generation of smartphones.

4. To meet this demand, the two parties will work together on the development of an optimized MEMS scanning mirror which will enable a pico-projector for smartphones applications. Through the project, the two parties aim to achieve a slimmer and smaller MEMS micromirror with high performance offering a compact yet high-resolution pico-projector solution for smartphones. This would ultimately turn any surface into a display.

5. “We are delighted that OPUS Microsystems has chosen IME to be their partner for their first research project in Singapore. The interest in pico-projectors has gained traction in recent years, but the industry challenge remains in achieving a cutting edge technology that will allow the integration of a small-scale projector into smartphones while maintaining a high resolution output. It is an exciting research and development opportunity for IME to be part of such a project that will potentially lead to a technological breakthrough,” commented Prof. Dim-Lee Kwong, Executive Director of A*STAR IME.

6. “We are excited to be partnering with IME on this collaboration,” said Andrew Hung, President of OPUS Microsystems. “IME is a leading semiconductor research institute with vast experience in MEMS. We are confident that the alliance will enable OPUS Microsystems to achieve practical results that will meet its desired device requirements.”

Enclosed: Annex A – Illustration of How a MEMS Pico-Projector Works

Media Contact:

For A*STAR IME:
Chua Yi Fen
Tel: +65 6770 5378
Email: chuayif@ime.a-star.edu.sg
For OPUS Microsystems:
Connie Lin
Tel: +886 2 27998200 ext 271
Email: connie@opusmicro.com.tw
About A*STAR Institute of Microelectronics (IME)
The Institute of Microelectronics (IME) is a research institute of the Science and Engineering Research Council of the Agency for Science, Technology and Research (A*STAR). Positioned to bridge the R&D between academia and industry, IME's mission is to add value to Singapore's semiconductor industry by developing strategic competencies, innovative technologies and intellectual property; enabling enterprises to be technologically competitive; and cultivating a technology talent pool to inject new knowledge to the industry. Its key research areas are in integrated circuits design, advanced packaging, bioelectronics and medical devices, MEMS, nanoelectronics, and photonics. For more information about IME, please visit https://www.ime.a-star.edu.sg.
About Agency for Science, Technology and Research (A*STAR)
The Agency for Science, Technology and Research (A*STAR) is Singapore's lead public sector agency that fosters world-class scientific research and talent to drive economic growth and transform Singapore into a vibrant knowledge-based and innovation driven economy.

In line with its mission-oriented mandate, A*STAR spearheads research and development in fields that are essential to growing Singapore’s manufacturing sector and catalysing new growth industries. A*STAR supports these economic clusters by providing intellectual, human and industrial capital to its partners in industry.

A*STAR oversees 20 biomedical sciences and physical sciences and engineering research entities, located in Biopolis and Fusionopolis as well as their vicinity. These two R&D hubs house a bustling and diverse community of local and international research scientists and engineers from A*STAR’s research entities as well as a growing number of corporate laboratories.

Please visit www.a-star.edu.sg

About OPUS Microsystems Corporation
Opus Microsystems Corporation is a global leader in developing and delivering innovative mobile projection solutions based on MEMS and semiconductor technologies. Based in Taiwan, Opus Microsystems is devoted to provide energy efficient turnkey solution of MEMS pico-projectors including MEMS scanning mirror, scan display controller IC and optical module design to enable large projected image with high resolution and vivid color for smartphone and various applications. For more information, please visit http://www.opusmicro.com.

Bernadette Lee | Research asia research news
Further information:
http://www.a-star.edu.sg/
http://www.researchsea.com

More articles from Information Technology:

nachricht Construction of practical quantum computers radically simplified
05.12.2016 | University of Sussex

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

Decoding cement's shape promises greener concrete

08.12.2016 | Materials Sciences

Will Earth still exist 5 billion years from now?

08.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>