Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

With Microchip Real Estate at a Premium, Drexel Engineers Look For a Wireless Solution

10.08.2012
“Location, location, location”: That age-old key to successful real estate investing has also been the driving mantra in microchip architecture.

But with space on the tiny silicon chips at a premium, as demand for faster, smaller technology increases, engineers at Drexel University could be adding “bandwidth” and “frequency” to the chip design paradigm by adding wireless antennas to the chips.

The engineers recently earned a National Science Foundation grant to develop tiny wireless networks on microchips. Wireless radio frequency antennas would allow information to be transmitted from one part of the chip to another without the use of wired interconnections, the “landlines” of the microchip world.

“Much like the human intestine, wired interconnections can be very long despite their ability to be condensed into a small space. However, the sheer volume of the connections necessary to make a functional chip still takes up a great deal of area,” said Dr. Baris Taskin, an associate professor in Drexel’s College of Engineering and a lead researcher on the project.

Taskin’s team is working to design a hybrid network-on-chip that uses both antennas and wired interconnections to optimize communication speed and allow the chip to be used in new and sophisticated platforms. The new chip will also use reconfigurable antenna technology developed at Drexel by Dr. Kapil Dandekar, who is Taskin’s collaborator in the research.

“A hybrid chip that utilizes both wired and wireless connections provides a more robust platform,” Taskin said. “Wired interconnections can be used as dedicated communications lines between areas that are constantly transmitting data. Antennas can eliminate a number of wired interconnections between the less-traveled paths of communication on the chip.”

The use of radio frequencies to transport data holds an additional advantage over other wireless methods used in next-generation microchips because the radio waves can travel through solids. Optical data transmission, which uses light waves, is also being developed as an alternative to wired interconnections. This method requires a clear line of sight between transmitters and receivers, however, which is a significant limiting factor in design and essentially negates its viability in 3D chip development.

A fully functional proof of concept could be finalized in the next five years, according to Taskin. The biggest challenges to designing the chip are the same as those experienced in developing a telecommunications network: making decisions about location of antennas, frequency of transmission and the amount of data that can be transmitted.

Successfully demonstrating the concept of wireless on-chip networking could open doors for using the technique in multi-core processors and to improve 3D chip design.

News media contact:
Britt Faulstick, news officer, Office of University Communications,
215-895-2617 (office), 215-796-5161 (cell), britt.faulstick@drexel.edu

Britt Faulstick | Newswise Science News
Further information:
http://www.drexel.edu

More articles from Information Technology:

nachricht Seeing the forest through the trees with a new LiDAR system
28.06.2017 | The Optical Society

nachricht Drones that drive
27.06.2017 | Massachusetts Institute of Technology, CSAIL

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>