Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Measuring Brain-Signals with neither goo nor shampoo - Fraunhofer scientists present first dry EEG on NIPS

10.12.2008
On December the 9th, 2008, scientists of the Fraunhofer Institute for Computer Architecture and Software Technology present the first prototype for a dry EEG (electroencephalogram). The device is shown on the NIPS (Neural Information Processing Systems Conference) in Vancouver, Canada.

It is based on six distributed contact electrodes that measure brain signals on the scalp. The voltage produced is strong enough to reliably extract EEG potentials in the microvolt range.

Before measuring can be undertaken, ordinary EEG devices have to be mounted on the patients head in a lengthy, time-consuming process. The single electrodes have to be filled with electrolyte gel to achieve electrical contact with the scalp. Setting up such a device takes about 30 minutes. Fraunhofer Scientists now present an alternative that shortens the process to about two minutes.

For this purpose, the scientists constructed a flexible helmet with six electrode arrays (multiple pins arranged in electrode sockets) as well as one reference electrode. The prototype will be used mainly for research purposes - especially in the field of Brain-Computer Interfaces (BCIs). In BCIs, brain signals are measured by means of an EEG, then classified and converted into control signals for the computer. Test persons can think about moving their right or left hand and then cause a cursor on a computer screen to be moved, just by using their imagination. At the NIPS, Fraunhofer researchers demonstrate for the first time how a BCI can be used with a dry electrode cap. A volunteer test person controls a computer game by means of his brain signals.

Preceding the presentation the scientists conducted a study with five healthy test persons. It was published in the scientific journal PLoS ONE. The study aimed at comparing the performance of a standard 64-electrode EEG with the new dry cap. The prototype was an average of 30% slower than the standard device (9,6 vs 14,9 bits/m), but performed just as well as the standard gel-based cap in terms of of maximum transmission rate (36,5 rsp.35,4 bits/m) and reliability (94, 5 rsp. 98% correctly analysed signals). This opens up new perspectives, especially for research in Brain-Computer Interfaces and the use of BCIs for severely disabled patients.

Approximately 1.3 million Euros in funding is being provided for the development of the dry cap under the EU's 6th Framework Programme for Research and Technological Development in connection with the Brain2Robot project.

We will happy to comply you with picture material on request. Further information is available from:
Press contact Fraunhofer FIRST
Mirjam Kaplow
Tel.: +49 (0) 30/ 6392-1823
E-mail: mirjam.kaplow@first.fraunhofer.de

Mirjam Kaplow | idw
Further information:
http://www.first.fraunhofer.de

More articles from Information Technology:

nachricht Cloud technology: Dynamic certificates make cloud service providers more secure
15.01.2018 | Technische Universität München

nachricht New discovery could improve brain-like memory and computing
10.01.2018 | University of Minnesota

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>