Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Measuring Brain-Signals with neither goo nor shampoo - Fraunhofer scientists present first dry EEG on NIPS

10.12.2008
On December the 9th, 2008, scientists of the Fraunhofer Institute for Computer Architecture and Software Technology present the first prototype for a dry EEG (electroencephalogram). The device is shown on the NIPS (Neural Information Processing Systems Conference) in Vancouver, Canada.

It is based on six distributed contact electrodes that measure brain signals on the scalp. The voltage produced is strong enough to reliably extract EEG potentials in the microvolt range.

Before measuring can be undertaken, ordinary EEG devices have to be mounted on the patients head in a lengthy, time-consuming process. The single electrodes have to be filled with electrolyte gel to achieve electrical contact with the scalp. Setting up such a device takes about 30 minutes. Fraunhofer Scientists now present an alternative that shortens the process to about two minutes.

For this purpose, the scientists constructed a flexible helmet with six electrode arrays (multiple pins arranged in electrode sockets) as well as one reference electrode. The prototype will be used mainly for research purposes - especially in the field of Brain-Computer Interfaces (BCIs). In BCIs, brain signals are measured by means of an EEG, then classified and converted into control signals for the computer. Test persons can think about moving their right or left hand and then cause a cursor on a computer screen to be moved, just by using their imagination. At the NIPS, Fraunhofer researchers demonstrate for the first time how a BCI can be used with a dry electrode cap. A volunteer test person controls a computer game by means of his brain signals.

Preceding the presentation the scientists conducted a study with five healthy test persons. It was published in the scientific journal PLoS ONE. The study aimed at comparing the performance of a standard 64-electrode EEG with the new dry cap. The prototype was an average of 30% slower than the standard device (9,6 vs 14,9 bits/m), but performed just as well as the standard gel-based cap in terms of of maximum transmission rate (36,5 rsp.35,4 bits/m) and reliability (94, 5 rsp. 98% correctly analysed signals). This opens up new perspectives, especially for research in Brain-Computer Interfaces and the use of BCIs for severely disabled patients.

Approximately 1.3 million Euros in funding is being provided for the development of the dry cap under the EU's 6th Framework Programme for Research and Technological Development in connection with the Brain2Robot project.

We will happy to comply you with picture material on request. Further information is available from:
Press contact Fraunhofer FIRST
Mirjam Kaplow
Tel.: +49 (0) 30/ 6392-1823
E-mail: mirjam.kaplow@first.fraunhofer.de

Mirjam Kaplow | idw
Further information:
http://www.first.fraunhofer.de

More articles from Information Technology:

nachricht Defining the backbone of future mobile internet access
21.07.2017 | IHP - Leibniz-Institut für innovative Mikroelektronik

nachricht Researchers create new technique for manipulating polarization of terahertz radiation
20.07.2017 | Brown University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>