Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Mathematics for safer medicine

The new HITS research group “Data Mining and Uncertainty Quantification” analyzes large amounts of data and calculates uncertainties in technical systems.

With Prof. Vincent Heuveline as their group leader, the group of mathematicians and computer scientists especially focuses on increasing the security of technology in operating rooms.

Prof. Dr. Vincent Heuveline, group leader, „Data Mining and Uncertainty Quantification group” at HITS

The new HITS research group “Data Mining and Uncertainty Quantification” analyzes large amounts of data and calculates uncertainties in technical systems. With Prof. Vincent Heuveline as their group leader, the group of mathematicians and computer scientists especially focuses on increasing the security of technology in operating rooms.

Natural Sciences continuously produce larger and more complex data sets – using elaborate sensor technology or computer simulations. But can researchers be sure that the results of their computer simulations are reliable and accurate enough even if some aspects of the system under consideration are not exactly known? The new research group “Data Mining and Uncertainty Quantification” at the Heidelberg Institute for Theoretical Studies (HITS) wants to shed light on this question. With Prof. Vincent Heuveline as group leader, six researchers focus on the analysis of large data sets and on the calculation of uncertainties within technical systems. They use state-of-the-art technology from the areas of High Performance Computing and Cloud Computing.

“Today’s computing power allows us to analyze and determine the quality of a calculation, by including a characterization of uncertainty“, says group leader Vincent Heuveline who is a professor at Heidelberg University. “We can therefore develop new scientific methods which add a new twist to the old philosophical question: ‘What is certain?’.”

The research group has chosen operating rooms as a key application area. “Nowadays, operating rooms are as well-equipped as a cockpit with its numerous technical instruments,” Heuveline explains. The instruments continuously generate a large amount of data so that the surgeon knows about the patient’s condition and the status of the devices. “Surgeons must be able to fully rely on their instruments, just like pilots”, Heuveline says. “We want to make sure they can do so.” The HITS researchers analyze the technical systems, simulate surgical procedures including their impact on the body of the patient, and also calculate the probability of an error occurring during the simulations. “The results of our observations will be integrated into the IT infrastructure of the operating room and make the systems even more reliable.”

The research group maintains a close relationship with the University of Heidelberg, which is illustrated by the overall organization. Besides his professorship, Vincent Heuveline also works as director of the university’s computer center, where he and 85 employees are responsible for the IT infrastructure of Germany’s oldest university, from e-mail accounts to high-performance computers. He also heads a research group at the university, the “Engineering Mathematics and Computing Lab” (EMCL) at the Interdisciplinary Center for Scientific Computing.

Vincent Heuveline (born in 1968) studied Mathematics, Physics and Computer Science at the Universities of Caen (France) and Würzburg. He received his PhD in Computer Science in 1997 from the Université de Rennes and habilitated in Mathematics at the University of Heidelberg in 2002. Since 2004, he was a professor at Karlsruhe University (KIT) until he moved to Heidelberg in May 2013.

Press Contact:
Dr. Peter Saueressig
Public Relations
Heidelberg Institute for Theoretical Studies (HITS)
Phone: +49-6221-533245
Twitter: @HITStudies
Scientific Contact:
Prof. Dr. Vincent Heuveline
Group leader
Data Mining and Uncertainty Quantification
Heidelberg Institute for Theoretical Studies (HITS)
Phone: +49-6221-533312

Dr. Peter Saueressig | idw
Further information:

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>