Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Math goes to the movies

14.04.2010
Whether it's an exploding fireball in "Star Wars: Episode 3", a swirling maelstrom in "Pirates of the Caribbean: At World's End", or beguiling rats turning out gourmet food in "Ratatouille", computer-generated effects have opened a whole new world of enchantment in cinema. All such effects are ultimately grounded in mathematics, which provides a critical translation from the physical world to computer simulations.

The use of mathematics in cinematic special effects is described in the article "Crashing Waves, Awesome Explosions, Turbulent Smoke, and Beyond: Applied Mathematics and Scientific Computing in the Visual Effects Industry", which will appear in the May 2010 issue of the NOTICES OF THE AMS. The article was written by three University of California, Los Angeles, mathematicians who have made significant contributions to research in this area: Aleka McAdams, Stanley Osher, and Joseph Teran.

Mathematics provides the language for expressing physical phenomena and their interactions, often in the form of partial differential equations. These equations are usually too complex to be solved exactly, so mathematicians have developed numerical methods and algorithms that can be implemented on computers to obtain approximate solutions. The kinds of approximations needed to, for example, simulate a firestorm, were in the past computationally intractable. With faster computing equipment and more-efficient architectures, such simulations are feasible today---and they drive many of the most spectacular feats in the visual effects industry.

Another motivation for development in this area of research is the need to provide a high level of controllability in the outcome of a simulation in order to fulfill the artistic vision of scenes. To this end, special effects simulation tools, while physically based, must be able to be dynamically controlled in an intuitive manner in order to ensure believability and the quality of the effect.

The area of computational fluid dynamics (CFD) provides many of the tools used in simulations of phenomena such as smoke, fire, and water. Before the use of CFD, computer-generated special effects such as explosions were driven by force fields applied to passive unconnected particles, a method that produced rather unrealistic results. Today, a combination of improved hardware and faster algorithms for CFD models have made such special effects much more realistic. CFD has also been used, unsurprisingly, to simulate water-based phenomena; in fact, such water simulation techniques were recognized by an Academy Award for Technical Achievement for the mathematician/computer scientist Ronald Fedkiw of Stanford University.

Mathematics also plays a key role in computer-generated animations of all kinds of solids, from animated characters to cityscapes. Virtually every computer-generated solid has an explicit mathematical representation as a meshed surface or volume. Flesh simulations can endow computer-generated characters with realistically bulging muscles and rippling fat. Hair simulation provides a realistic way to depict the highly complex phenomenon of thousands of hairs interacting and colliding. The article describes recent work by the the first and third authors that provides a new technique for hair simulation.

The effects industry is emerging as an exciting new frontier for mathematicians, one that uniquely combines mathematical insights with the art of moviemaking.

An advance copy of the article by McAdams, Osher, and Teran is available to reporters at the non-public URL

http://www.ams.org/jackson/fea-mcadams.pdf

Founded in 1888 to further mathematical research and scholarship, today the American Mathematical Society has more than 32,000 members. The Society fulfills its mission through programs and services that promote mathematical research and its uses, strengthen mathematical education, and foster awareness and appreciation of mathematics and its connections to other disciplines and to everyday life.

Contacts: Mike Breen and Annette Emerson
Public Awareness Officers, American Mathematical Society
Email: paoffice@ams.org
American Mathematical Society
201 Charles Street
Providence, RI 02904
401-455-4000

Mike Breen | EurekAlert!
Further information:
http://www.ams.org

More articles from Information Technology:

nachricht Cloud technology: Dynamic certificates make cloud service providers more secure
15.01.2018 | Technische Universität München

nachricht New discovery could improve brain-like memory and computing
10.01.2018 | University of Minnesota

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>