Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


ManuCloud: Infrastructure for IT integration from equipment to cross-company production networks

After three years the EC funded project ManuCloud was successfully finished. As a main result, the project members Fraunhofer IPA, acp-IT, nxtControl, and University of Strathclyde launched a web platform for the provision of customizable products by means inter-factory collaboration among manufacturing companies.

The increasing demand for customizable products, especially of high value goods or throughout high-tech industry branches such as automotive, photovoltaic or consumer electronics causes a need for flexible manufacturing environments. Even more, especially in these industries, manufacturing of products is not only executed at singular premises but throughout production networks is best practice.

For this reason, customization of certain products in most cases not only concerns on production site but influence parts of the related supply chain. This makes it necessary to consider the interdependencies of sub-products or processes delivered by the suppliers and their customization options during the design of the product and setup of the production network. Manufacturers have to closely cooperate in this network in order to exchange information about product specifications and to jointly plan delivery dates and other logistic details. Obviously, this causes efforts on each production network participant’s side and also may delay feedback towards end-customers.

In order to overcome these issues, the ManuCloud project followed the cloud manufacturing approach, i.e. it transferred service concepts from the computing domain (e.g. software-as-a-service) to the manufacturing domain (manufacturing-as-a-service) in order to (semi-)automate the integration of production networks on IT level.

In detail this means, that in addition to the exchange of business level information which is already well-established in industry, the developed web platform serves as an integration tool for product specifications and manufacturing IT systems on production network level. This could be achieved by describing products or process capabilities by means of manufacturing service descriptions which are generated from factory internal IT systems like MES (Manufacturing Execution System) in a semi-automated way. This generation of manufacturing service descriptions can take place consistently throughout all factory internal IT layers – starting with the description of equipment capabilities which are step by step aggregated and mapped to the services a factory provides.

Those service descriptions also include configuration options for the customization process of each (sub-)product or process provided by them and can be composed by means of a tree structure to end-products, i.e. the related supply chains.

Based on those end-product descriptions which are based on the underlying service descriptions and use their configuration options, user-specific adaption of products to the specific wishes is provided via a product configurator. This configurator automatically adapts to the respective product characteristics and configuration options provided and herewith represents a general tool to be reused for all products provided via the platform.

After configuring and ordering a product, MES-level control functionalities are provided throughout the production network, i.e. tracking of production status and measurement results, or even the optimization of configuration settings according to previous process results.

The ManuCloud consortium: The ManuCloud consortium was composed of eight partners from four different EU member states (Austria, Germany, Hungary, United Kingdom). The partners were the following: advanced clean production Information Technology GmbH (acp-IT), Robert Bosch GmbH, Fraunhofer Institute for Manufacturing Engineering and Automation (IPA, consortium leader), Fraunhofer Research Institution for Organics, Materials and Electronic Devices COMEDD, HELIATEK GmbH, Tridonic Dresden GmbH & Co. KG (formerly LEDON OLED Lighting GmbH & Co. KG), nxtControl GmbH, Computer and Automation Research Institute of the Hungarian Academy of Sciences, and the University of Strathclyde.

Thanks to all partners!

The research leading to this result has received funding from the European Union’s 7th Framework Programme (grant agreement no. 260142).

Jörg Walz | Fraunhofer-Institut
Further information:

More articles from Information Technology:

nachricht Green Light for Galaxy Europe
15.03.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Tokyo Tech's six-legged robots get closer to nature
12.03.2018 | Tokyo Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>