Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making digital maps more current and accurate

02.01.2009
European researchers have designed an innovative new system to help keep motorists on the right track by constantly updating their digital maps and fixing anomalies and errors. Now the partners are mapping the best route to market.

The ‘oddly enough’ sections of newspapers regularly feature amusing stories of GPS mayhem. For instance, one lorry driver in Poland had such confidence in his positioning device that he ignored several signs warning that a road had been closed to make way for an artificial reservoir and drove straight into the lake!

In addition to providing a cautionary tale about investing too much faith in technology, this amusing anecdote highlights a more mundane and daily challenge: how to reflect the constantly shifting topography of Europe’s road network.

A large number of digital maps used by onboard GPS navigation systems are stored on DVDs or hard disks, with periodic updates only available on replacement disks. In addition, advanced driver assistance systems (ADAS) – such as adaptive cruise control (ACC) and lane-keeping systems (LKS) – are beginning to make more extensive use of digital maps. Given the safety dimension of ADAS applications, it is crucial that digital maps are highly accurate.

Some interactive solutions have made it to market. One example is the EU-backed ActMAP project which developed mechanisms for online, incremental updates of digital map databases using wireless technology. The system helps to shorten the time span between updates significantly. Nevertheless, there is still room for improvement in terms of detecting map errors, changes in the real world, or monitoring highly dynamic events like local warnings automatically. Addressing these ever-changing realities requires a radical rethink of the applied methodology.

Ground-level input

The assumption behind ActMAP and other systems is that the supplier is responsible for all updates. However, this approach overlooks a valuable source of information: the motorists who use the navigation systems themselves. If anomalies found by road users could be automatically sent to the supplier, this could be used as a valuable supplementary source of information to iron out irregularities in maps and beam them back to the users.

This bottom-up approach is the basic premise of FeedMAP, which has been designed to work in a loop with ActMAP. This means that, when the reality on the ground does not correspond with the digital map in the system, these so-called map deviations are automatically compiled into a map deviation report which is picked up by roadside sensors and relayed back to the supplier. The driver can also report anomalies (s)he encounters manually.

“Of course, FeedMAP will obviously not act as an unconditional map update generator. The last verification will always remain to be done by the map centres using their other sources of information,” notes Maxime Flament of ERTICO – ITS Europe, a multi-stakeholder organisation pursuing the development and deployment of intelligent transport systems and services.

FeedMAP’s versatility and potential for fine-tuning means that it not only can help keep maps up to date, but it can also be used in numerous ADAS applications, including adaptive speed recommendations which advise drivers about speed limits on the road ahead, and speed deviation detection which updates recommended speeds based on feedback from actual driver behaviour.

FeedMAP can also be integrated into fuel-saving applications, which will be good for the environment and good for motorists’ wallets as well.

Mapping the road to market

The system has been extensively tested and FeedMAP was found to be both technically and commercially feasible.

“Based on already existing business models, the FeedMAP concept can be brought to market,” concludes Bengt Thomas of NAVIGON, a partner in the project. “The clear benefit for map suppliers is the availability of a constant stream of deviation reports to improve their map quality. As the improvements will be shared with all customers, it will result, in the longer run, in better map products for the whole market.”

The FeedMAP partners considered three possible business models. The most promising one, which they believe is worth pursuing, focuses on bundling FeedMAP with the other services already offered by car manufacturers, while the actual management of the data and updates would be carried out by so-called FeedMAP service centres.

“Automotive manufacturers already offer connected services in their vehicles, therefore the basic communication infrastructure is available for sending and receiving map data,” says Jan Loewenau of BMW Research and Technology.

FeedMAP partners – including Daimler, BMW, Volvo Trucks and FIAT’s research centre – are so positive about the results of the project that they have decided to run with it by integrating it into the ActMAP system. “The complete FeedMAP/ActMAP loop of map data is the next cornerstone for map-based applications, such as navigation and ADAS safety,” concludes Flament.

FeedMAP was funded by the ICT strand of the EU’s Sixth Framework Programme for research.

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/90334

More articles from Information Technology:

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

nachricht Researchers catch extreme waves with higher-resolution modeling
15.02.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Multicrystalline Silicon Solar Cell with 21.9 % Efficiency: Fraunhofer ISE Again Holds World Record

20.02.2017 | Power and Electrical Engineering

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>