Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Make your mobile device live up to its true potential -- as a data collection tool

15.08.2014

Easy Leaf Area software calculates leaf area from digital images

Leaf measurements are often critical in plant physiological and ecological studies, but traditional methods have been time consuming and sometimes destructive to plant samples. Researchers at the University of California, Davis, have developed Easy Leaf Area—a free software written in an open-source programming language—to allow users to accurately measure leaf area from digital images in seconds.

"It has always been a challenge to measure leaf surface area without damaging the plants or spending long hours in the lab, so I decided to attempt to write software to automatically measure leaf and scale area from smartphone images," explains Hsien Ming Easlon, a researcher at UC Davis and one of the developers of Easy Leaf Area. "Leaf area measurements are essential for estimating crop yields, water usage, nutrient absorption, plant competition, and many other aspects of growth."

The digital images he uses are taken with the Apple IPhone 4, but any current smartphone camera or digital camera will do. Once the images are uploaded to a computer, Easy Leaf Area can process hundreds of images and save the results to a spreadsheet-ready CSV file. The Windows executable software is free to download and can be modified to suit specific experimental requirements. A full report including links to additional resources is available in a recent issue of Applications in Plant Sciences.

Easlon recalls, "Our lab started using digital cameras when I was a graduate student. We figured out how to use Photoshop to measure areas in digital images, but this method still required one to five minutes of human input per image."

Five minutes per image may not seem like a long time, but multiply that by hundreds of plants—a normal sample size—and those minutes add up fast. By automating data analysis, researchers can save countless hours of manual labor, improve the accuracy and consistency of their results, and reduce potential damages to their plant samples.

Easlon and his team developed Easy Leaf Area using Arabidopsis plants, and also tested Easy Leaf Area on photographs of field-grown tomatoes and wheat, and photographs and scans of detached leaves of a common tree poppy, California redwood, chaparral currant, Jeffrey pine, and Valley oak. Manual adjustments to the automatic algorithm can be saved for different plants and field conditions, making this a practical tool for researchers in many plant science fields.

Easlon's next step is to develop a mobile version so that leaf area measurements can be made on the fly without a PC. He also plans to add handwriting recognition or barcode reading to the software. This will automatically interpret labeled plant stakes and assign the proper file names to each image.

"Most researchers don't have the time or knowledge to develop software for themselves, so scientific use of smartphones is primarily limited to built-in features. The processing power, connectivity, built-in sensors, storage capacity, and low price give smartphones great potential to replace many single-purpose devices for scientific data collection," explains Easlon.

Calculating plant surface area could soon be as easy as using Instagram.

###

Hsien Ming Easlon and Arnold J. Bloom. 2014. Easy Leaf Area: Automated digital image analysis for rapid and accurate measurement of leaf area. Applications in Plant Sciences 2(7): 1400033. doi:10.3732/apps.1400033

Applications in Plant Sciences (APPS) is a monthly, peer-reviewed, open access journal focusing on new tools, technologies, and protocols in all areas of the plant sciences. It is published by the Botanical Society of America, a nonprofit membership society with a mission to promote botany, the field of basic science dealing with the study and inquiry into the form, function, development, diversity, reproduction, evolution, and uses of plants and their interactions within the biosphere. APPS is available as part of BioOne's Open Access collection .

For further information, please contact the APPS staff at apps@botany.org.

Beth Parada | Eurek Alert!
Further information:
http://www.amjbot.org/

Further reports about: Botany Instagram collection explains images leaf measurements technologies

More articles from Information Technology:

nachricht World's thinnest hologram paves path to new 3-D world
18.05.2017 | RMIT University

nachricht Internet of things made simple: One sensor package does work of many
11.05.2017 | Carnegie Mellon University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>