Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Make your mobile device live up to its true potential -- as a data collection tool

15.08.2014

Easy Leaf Area software calculates leaf area from digital images

Leaf measurements are often critical in plant physiological and ecological studies, but traditional methods have been time consuming and sometimes destructive to plant samples. Researchers at the University of California, Davis, have developed Easy Leaf Area—a free software written in an open-source programming language—to allow users to accurately measure leaf area from digital images in seconds.

"It has always been a challenge to measure leaf surface area without damaging the plants or spending long hours in the lab, so I decided to attempt to write software to automatically measure leaf and scale area from smartphone images," explains Hsien Ming Easlon, a researcher at UC Davis and one of the developers of Easy Leaf Area. "Leaf area measurements are essential for estimating crop yields, water usage, nutrient absorption, plant competition, and many other aspects of growth."

The digital images he uses are taken with the Apple IPhone 4, but any current smartphone camera or digital camera will do. Once the images are uploaded to a computer, Easy Leaf Area can process hundreds of images and save the results to a spreadsheet-ready CSV file. The Windows executable software is free to download and can be modified to suit specific experimental requirements. A full report including links to additional resources is available in a recent issue of Applications in Plant Sciences.

Easlon recalls, "Our lab started using digital cameras when I was a graduate student. We figured out how to use Photoshop to measure areas in digital images, but this method still required one to five minutes of human input per image."

Five minutes per image may not seem like a long time, but multiply that by hundreds of plants—a normal sample size—and those minutes add up fast. By automating data analysis, researchers can save countless hours of manual labor, improve the accuracy and consistency of their results, and reduce potential damages to their plant samples.

Easlon and his team developed Easy Leaf Area using Arabidopsis plants, and also tested Easy Leaf Area on photographs of field-grown tomatoes and wheat, and photographs and scans of detached leaves of a common tree poppy, California redwood, chaparral currant, Jeffrey pine, and Valley oak. Manual adjustments to the automatic algorithm can be saved for different plants and field conditions, making this a practical tool for researchers in many plant science fields.

Easlon's next step is to develop a mobile version so that leaf area measurements can be made on the fly without a PC. He also plans to add handwriting recognition or barcode reading to the software. This will automatically interpret labeled plant stakes and assign the proper file names to each image.

"Most researchers don't have the time or knowledge to develop software for themselves, so scientific use of smartphones is primarily limited to built-in features. The processing power, connectivity, built-in sensors, storage capacity, and low price give smartphones great potential to replace many single-purpose devices for scientific data collection," explains Easlon.

Calculating plant surface area could soon be as easy as using Instagram.

###

Hsien Ming Easlon and Arnold J. Bloom. 2014. Easy Leaf Area: Automated digital image analysis for rapid and accurate measurement of leaf area. Applications in Plant Sciences 2(7): 1400033. doi:10.3732/apps.1400033

Applications in Plant Sciences (APPS) is a monthly, peer-reviewed, open access journal focusing on new tools, technologies, and protocols in all areas of the plant sciences. It is published by the Botanical Society of America, a nonprofit membership society with a mission to promote botany, the field of basic science dealing with the study and inquiry into the form, function, development, diversity, reproduction, evolution, and uses of plants and their interactions within the biosphere. APPS is available as part of BioOne's Open Access collection .

For further information, please contact the APPS staff at apps@botany.org.

Beth Parada | Eurek Alert!
Further information:
http://www.amjbot.org/

Further reports about: Botany Instagram collection explains images leaf measurements technologies

More articles from Information Technology:

nachricht Terahertz spectroscopy goes nano
20.10.2017 | Brown University

nachricht New software speeds origami structure designs
12.10.2017 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>