Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Major breakthrough improves software reliability and security

03.11.2011
Computer scientists at Columbia Engineering develop a system that makes multithreaded programs run more stably and efficiently

Anyone who uses multithreaded computer programs -- and that's all of us, as these are the programs that power nearly all software applications including Office, Windows, MacOS, and Google Chrome Browser, and web services like Google Search, Microsoft Bing, and iCloud, -- knows well the frustration of computer crashes, bugs, and other aggravating problems.

The most widely used method to harness the power we require from multicore processors, multithreaded programs can be difficult for programmers to get right and they often contain elusive bugs called races. Data races can cause very serious problems, like the software bug that set off the 2003 power blackout in the Northeast. Now there is a new system that will combat this problem.

Peregrine, a new software system developed by a team of researchers at Columbia Engineering School, led by Assistant Professor of Computer Science Junfeng Yang, will improve the reliability and security of multithreaded programs, benefiting virtually every computer user across the globe. Peregrine can be used by software vendors like Microsoft and Apple and web service providers like Google and Facebook, to provide reliable services to computer users. This new research was published in the 23rd ACM Symposium on Operating Systems Principles, considered to be the most prestigious systems conference held each year, and presented by Yang's graduate student Heming Cui at Cascais, Portugal, on Oct. 26. The paper can be found at http://systems.cs.columbia.edu/archive/pub/2011/10/efficient-deterministic-multithreading-through-schedule-relaxation/.

"Multithreaded programs are becoming more and more critical and pervasive," says Professor Yang."But these programs are nondeterministic, so running them is like tossing a coin or rolling dice -- sometimes we get correct results, and sometimes we get wrong results or the program crashes. Our main finding in developing Peregrine is that we can make threads deterministic in an efficient and stable way: Peregrine can compute a plan for allowing when and where a thread can "change lanes" and can then place barriers between the lanes, allowing threads to change lanes only at fixed locations, following a fixed order. This prevents the random collisions that can occur in a nondeterministic system.

"Once Peregrine computes a good plan without collisions for one group of threads," adds Yang, "it can reuse the plan on subsequent groups to avoid the cost of computing a new plan for each new group. This approach matches our natural tendency to follow familiar routes so we can avoid both potential hazards in unknown routes and efforts to find a new route."

Yang notes that in contrast to many earlier systems that address only resultant problems but not the root cause, Peregrine addresses nondeterminism -- a system that is unpredictable as each input has multiple potential outcomes -- and thus simultaneously addresses all the problems that are caused by nondeterminism.

Peregrine also deals with data races or bugs, unlike most previous efforts that do not provide such fine-grained control over the execution of a program. And it's very fast -- many earlier systems may slow down the execution of a program by up to ten times. Peregrine is also a practical system that works with current hardware and programming languages -- it does not require new hardware or new languages, all of which can take years to develop. It reuses execution plans, whereas some previous work makes a different plan for each group of threads: as Yang points out, "The more plans one makes, the more likely some plans have errors and will lead to collisions."

"Today's software systems are large, complex, and plagued with errors, some of which have caused critical system failures and exploits," adds Yang. "My research is focused on creating effective tools to improve the reliability and security of real software systems. I'm excited about this area because it has the potential to make the cyberspace a better place and benefit every government, business, and individual who uses computers."

###
Yang's research was funded by the National Science Foundation, including an NSF CAREER award, the Defense Advanced Research Projects Agency (DARPA), the Air Force Research Laboratory (AFRL), and the Intelligence Advanced Research Projects Activity (IARPA).

Columbia Engineering

Columbia University's Fu Foundation School of Engineering and Applied Science, founded in 1864, offers programs in nine departments to both undergraduate and graduate students. With facilities specifically designed and equipped to meet the laboratory and research needs of faculty and students, Columbia Engineering is home to NSF-NIH funded centers in genomic science, molecular nanostructures, materials science, and energy, as well as one of the world's leading programs in financial engineering. These interdisciplinary centers are leading the way in their respective fields while individual groups of engineers and scientists collaborate to solve some of modern society's more difficult challenges. http://www.engineering.columbia.edu/

Holly Evarts | EurekAlert!
Further information:
http://www.columbia.edu

More articles from Information Technology:

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

nachricht New standard helps optical trackers follow moving objects precisely
23.11.2016 | National Institute of Standards and Technology (NIST)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>