Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Major breakthrough improves software reliability and security

03.11.2011
Computer scientists at Columbia Engineering develop a system that makes multithreaded programs run more stably and efficiently

Anyone who uses multithreaded computer programs -- and that's all of us, as these are the programs that power nearly all software applications including Office, Windows, MacOS, and Google Chrome Browser, and web services like Google Search, Microsoft Bing, and iCloud, -- knows well the frustration of computer crashes, bugs, and other aggravating problems.

The most widely used method to harness the power we require from multicore processors, multithreaded programs can be difficult for programmers to get right and they often contain elusive bugs called races. Data races can cause very serious problems, like the software bug that set off the 2003 power blackout in the Northeast. Now there is a new system that will combat this problem.

Peregrine, a new software system developed by a team of researchers at Columbia Engineering School, led by Assistant Professor of Computer Science Junfeng Yang, will improve the reliability and security of multithreaded programs, benefiting virtually every computer user across the globe. Peregrine can be used by software vendors like Microsoft and Apple and web service providers like Google and Facebook, to provide reliable services to computer users. This new research was published in the 23rd ACM Symposium on Operating Systems Principles, considered to be the most prestigious systems conference held each year, and presented by Yang's graduate student Heming Cui at Cascais, Portugal, on Oct. 26. The paper can be found at http://systems.cs.columbia.edu/archive/pub/2011/10/efficient-deterministic-multithreading-through-schedule-relaxation/.

"Multithreaded programs are becoming more and more critical and pervasive," says Professor Yang."But these programs are nondeterministic, so running them is like tossing a coin or rolling dice -- sometimes we get correct results, and sometimes we get wrong results or the program crashes. Our main finding in developing Peregrine is that we can make threads deterministic in an efficient and stable way: Peregrine can compute a plan for allowing when and where a thread can "change lanes" and can then place barriers between the lanes, allowing threads to change lanes only at fixed locations, following a fixed order. This prevents the random collisions that can occur in a nondeterministic system.

"Once Peregrine computes a good plan without collisions for one group of threads," adds Yang, "it can reuse the plan on subsequent groups to avoid the cost of computing a new plan for each new group. This approach matches our natural tendency to follow familiar routes so we can avoid both potential hazards in unknown routes and efforts to find a new route."

Yang notes that in contrast to many earlier systems that address only resultant problems but not the root cause, Peregrine addresses nondeterminism -- a system that is unpredictable as each input has multiple potential outcomes -- and thus simultaneously addresses all the problems that are caused by nondeterminism.

Peregrine also deals with data races or bugs, unlike most previous efforts that do not provide such fine-grained control over the execution of a program. And it's very fast -- many earlier systems may slow down the execution of a program by up to ten times. Peregrine is also a practical system that works with current hardware and programming languages -- it does not require new hardware or new languages, all of which can take years to develop. It reuses execution plans, whereas some previous work makes a different plan for each group of threads: as Yang points out, "The more plans one makes, the more likely some plans have errors and will lead to collisions."

"Today's software systems are large, complex, and plagued with errors, some of which have caused critical system failures and exploits," adds Yang. "My research is focused on creating effective tools to improve the reliability and security of real software systems. I'm excited about this area because it has the potential to make the cyberspace a better place and benefit every government, business, and individual who uses computers."

###
Yang's research was funded by the National Science Foundation, including an NSF CAREER award, the Defense Advanced Research Projects Agency (DARPA), the Air Force Research Laboratory (AFRL), and the Intelligence Advanced Research Projects Activity (IARPA).

Columbia Engineering

Columbia University's Fu Foundation School of Engineering and Applied Science, founded in 1864, offers programs in nine departments to both undergraduate and graduate students. With facilities specifically designed and equipped to meet the laboratory and research needs of faculty and students, Columbia Engineering is home to NSF-NIH funded centers in genomic science, molecular nanostructures, materials science, and energy, as well as one of the world's leading programs in financial engineering. These interdisciplinary centers are leading the way in their respective fields while individual groups of engineers and scientists collaborate to solve some of modern society's more difficult challenges. http://www.engineering.columbia.edu/

Holly Evarts | EurekAlert!
Further information:
http://www.columbia.edu

More articles from Information Technology:

nachricht Stable magnetic bit of three atoms
21.09.2017 | Sonderforschungsbereich 668

nachricht Drones can almost see in the dark
20.09.2017 | Universität Zürich

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>