Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Magnetic Tuning Method Enhances Data Storage

09.02.2010
Researchers in Chicago and London have developed a method for controlling the properties of magnets that could be used to improve the storage capacity of next-generation computer hard drives.

Magnets that can readily switch their polarity are widely used in the computer industry for data storage, but they present an engineering challenge: A magnet’s polarity must be easily switched when writing data to memory, but be difficult to switch when storing or reading it.

These conflicting requirements are typically met by heating and softening the magnet for saving data, then cooling and hardening the magnet for storage and reading. But now the University of Chicago’s Daniel Silevitch and Thomas Rosenbaum and Gabriel Aeppli of the London Centre for Nanotechnology (a joint enterprise of University and Imperial Colleges London) have filed a patent on a method that avoids this complex heating operation. As the trio report in the Proceedings of the National Academy of Sciences, they can tune the softness of the magnet with the application of a small external magnetic field, which allows writing, storage and readout at a fixed temperature.

Citation: “Switchable hardening of a ferromagnet at fixed temperature,” by D.M. Silevitch, G. Aeppli and T.F. Rosenbaum, Proceedings of the National Academy of Sciences Early Edition, Jan. 29, 2010.

www.pnas.org/cgi/doi/10.1073/pnas.0910575107

Funding: U.S. Department of Energy and the United Kingdom Engineering and Physical Sciences Research Council.

About the London Centre for Nanotechnology
The London Centre for Nanotechnology is a UK-based, multidisciplinary research center forming the bridge between the physical and biomedical sciences. It was conceived from the outset with a management structure allowing for a clear focus on scientific excellence, exploitation and commercialization. It brings together two world leaders in nanotechnology, namely UCL and Imperial College London, in a unique operating model that accesses the combined skills of multiple departments, including medicine, chemistry, physics, electrical and electronic engineering, biochemical engineering, materials and earth sciences, and two leading technology transfer offices. Website: www.london-nano.com
About UCL
Founded in 1826, UCL was the first English university established after Oxford and Cambridge, the first to admit students regardless of race, class, religion or gender, and the first to provide systematic teaching of law, architecture and medicine. UCL is the fourth-ranked university in the 2009 THES-QS World University Rankings. UCL alumni include Marie Stopes, Jonathan Dimbleby, Lord Woolf, Alexander Graham Bell, and members of the band Coldplay. UCL currently has more than 12,000 undergraduate and 8,000 postgraduate students. Its annual income is over £600 million.

Steve Koppes | Newswise Science News
Further information:
http://www.ucl.ac.uk

More articles from Information Technology:

nachricht Gecko adhesion technology moves closer to industrial uses
13.12.2017 | Georgia Institute of Technology

nachricht New silicon structure opens the gate to quantum computers
12.12.2017 | Princeton University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>