Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LiquidText Software Supports Active Reading through Fingertip Manipulation of Text

29.06.2011
Many reading tasks require individuals to not only read a document, but also to understand, learn from and retain the information in it. For this type of reading, experts recommend a process called active reading, which involves highlighting, outlining and taking notes on the text.

Researchers at the Georgia Institute of Technology have developed software that facilitates an innovative approach to active reading. Taking advantage of touch-screen tablet computers, the LiquidText software enables active readers to interact with documents using finger motions. LiquidText can significantly enhance the experiences of active readers, a group that includes students, lawyers, managers, corporate strategists and researchers.

“Most computer-based active reading software seeks to replicate the experience of paper, but paper has limitations, being in many ways inflexible,” said Georgia Tech graduate student Craig Tashman. “LiquidText offers readers a fluid-like representation of text so that users can restructure, revisualize and rearrange content to suit their needs.”

LiquidText was developed by Tashman and Keith Edwards, an associate professor in the Georgia Tech School of Interactive Computing. The software can run on any Windows 7 touchscreen computer.

Details on LiquidText were presented last month at the Association for Computing Machinery’s annual Conference on Human Factors in Computing Systems (CHI) in Vancouver, Canada. Development of LiquidText was supported by the National Science Foundation, Steelcase, Samsung and Dell.

Active reading demands more of the reading medium than simply advancing pages, Edwards noted. Active readers may need to create and find a variety of highlights and comments, and move rapidly among multiple sections of a document.

“With paper, it can be difficult to view disconnected parts of a document in parallel, annotation can be constraining, and its linear nature gives readers little flexibility for creating their own navigational structures,” said Edwards.

LiquidText provides flexible control of the visual arrangement of content, including both original text and annotations. To do this, the software uses a number of common fingertip gestures on the touchscreen and introduces several novel gestures. For example, to view two areas of a document at once, the user can pinch an area of text and collapse it.

Active reading involves annotation, content extraction and fast, fluid navigation among multiple portions of a document. To accomplish these tasks, LiquidText integrates a traditional document reading space with a dedicated workspace area where the user can organize excerpts and annotations of a text -- without losing the links back to their sources. In these spaces, the user can perform many actions, including:
• Highlight text
• Comment about text
• Extract text
• Collapse text
• Bookmark text
• Magnify text
For commenting, LiquidText breaks away from the traditional one-to-one mapping between content and comments. Comment objects can refer to any number of pieces of content across a document, or even multiple documents. Comments can be pulled off, rearranged and grouped with other items while maintaining a persistent link back to the content they refer to. To add a comment, users simply select the desired text and begin typing.

Content can also be copied and extracted using LiquidText. Once a section of text has been selected, the user creates an excerpt simply by dragging the selection into the workspace until it “snaps off” of the document. The original content remains in the document, although it is tinted slightly to indicate that an excerpt has been made from it. Excerpts can be freely laid out in the workspace area or be attached to one another or to documents to form groups, while each excerpt can also be traced back to its source.

“The problem with paper and some software programs is that the comments must generally fit in the space of a small margin and can only be linked to a single page of text at a time,” said Tashman. “LiquidText’s more flexible notion of comments and large workspace area provide space for organizing and manipulating any comments or document excerpts the user may have created.”

In addition to traditional zooming and panning, the user can create a magnifying glass in the workspace by tapping with three fingers. The magnifying glass zooms in on select areas while allowing the user to maintain an awareness of the workspace as a whole. Users can manipulate the magnifying glass with simple multi-touch gestures, such as pinching or stretching to resize the lens, or rotating to change the zoom level -- like the zoom lens of a camera. Users can position, resize and control the zoom level of the magnifying glasses in a continuous motion by movements of the hand alone.

The ability to move within a document, search for text, turn a page, or flip between locations to compare parts of a text is also important for active reading. To complete these actions, LiquidText allows users to collapse text, dog-ear text and create magnified views of text.

“In contrast to traditional document viewing software, in which users must create separate panes and scroll them individually, LiquidText’s functionality lets a user view two or more document areas with just one action, parallelizing an otherwise serial task,” explained Edwards.

Since developing their initial prototype, the researchers have refined the software based on feedback from designers and human factors professionals, and active readers that included managers, lawyers, students and strategists.

Tashman is currently working with Georgia Tech’s Enterprise Innovation Institute to form a startup company to commercialize the technology. The $15,000 Georgia Tech Edison Prize he won, along with $43,000 in grants from the Georgia Research Alliance, will help launch the new company that plans to introduce LiquidText to the public later this year.

The Georgia Tech Edison Prize was established to encourage formation of startup companies based on technology developed at Georgia Tech, and was made possible by a multi-year grant from the Charles A. Edison Fund, named for the inventor’s son. Presentation of the prize, the second to be awarded from the Fund, was part of the Georgia Tech Graduate Research and Innovation Conference held Feb. 8, 2011.

This project is supported in part by the National Science Foundation (Award No. IIS-0705569). The content is solely the responsibility of the principal investigator and does not necessarily represent the official views of the NSF.

Research News & Publications Office
Georgia Institute of Technology
75 Fifth Street, N.W., Suite 314
Atlanta, Georgia 30308 USA
Media Relations Contacts: Abby Robinson (abby@innovate.gatech.edu; 404-385-3364) or John Toon (jtoon@gatech.edu; 404-894-6986)

Writer: Abby Robinson

Abby Robinson | Newswise Science News
Further information:
http://www.gatech.edu

More articles from Information Technology:

nachricht Smart Computers
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht AI implications: Engineer's model lays groundwork for machine-learning device
18.08.2017 | Washington University in St. Louis

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>