Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LiquidText Software Supports Active Reading through Fingertip Manipulation of Text

29.06.2011
Many reading tasks require individuals to not only read a document, but also to understand, learn from and retain the information in it. For this type of reading, experts recommend a process called active reading, which involves highlighting, outlining and taking notes on the text.

Researchers at the Georgia Institute of Technology have developed software that facilitates an innovative approach to active reading. Taking advantage of touch-screen tablet computers, the LiquidText software enables active readers to interact with documents using finger motions. LiquidText can significantly enhance the experiences of active readers, a group that includes students, lawyers, managers, corporate strategists and researchers.

“Most computer-based active reading software seeks to replicate the experience of paper, but paper has limitations, being in many ways inflexible,” said Georgia Tech graduate student Craig Tashman. “LiquidText offers readers a fluid-like representation of text so that users can restructure, revisualize and rearrange content to suit their needs.”

LiquidText was developed by Tashman and Keith Edwards, an associate professor in the Georgia Tech School of Interactive Computing. The software can run on any Windows 7 touchscreen computer.

Details on LiquidText were presented last month at the Association for Computing Machinery’s annual Conference on Human Factors in Computing Systems (CHI) in Vancouver, Canada. Development of LiquidText was supported by the National Science Foundation, Steelcase, Samsung and Dell.

Active reading demands more of the reading medium than simply advancing pages, Edwards noted. Active readers may need to create and find a variety of highlights and comments, and move rapidly among multiple sections of a document.

“With paper, it can be difficult to view disconnected parts of a document in parallel, annotation can be constraining, and its linear nature gives readers little flexibility for creating their own navigational structures,” said Edwards.

LiquidText provides flexible control of the visual arrangement of content, including both original text and annotations. To do this, the software uses a number of common fingertip gestures on the touchscreen and introduces several novel gestures. For example, to view two areas of a document at once, the user can pinch an area of text and collapse it.

Active reading involves annotation, content extraction and fast, fluid navigation among multiple portions of a document. To accomplish these tasks, LiquidText integrates a traditional document reading space with a dedicated workspace area where the user can organize excerpts and annotations of a text -- without losing the links back to their sources. In these spaces, the user can perform many actions, including:
• Highlight text
• Comment about text
• Extract text
• Collapse text
• Bookmark text
• Magnify text
For commenting, LiquidText breaks away from the traditional one-to-one mapping between content and comments. Comment objects can refer to any number of pieces of content across a document, or even multiple documents. Comments can be pulled off, rearranged and grouped with other items while maintaining a persistent link back to the content they refer to. To add a comment, users simply select the desired text and begin typing.

Content can also be copied and extracted using LiquidText. Once a section of text has been selected, the user creates an excerpt simply by dragging the selection into the workspace until it “snaps off” of the document. The original content remains in the document, although it is tinted slightly to indicate that an excerpt has been made from it. Excerpts can be freely laid out in the workspace area or be attached to one another or to documents to form groups, while each excerpt can also be traced back to its source.

“The problem with paper and some software programs is that the comments must generally fit in the space of a small margin and can only be linked to a single page of text at a time,” said Tashman. “LiquidText’s more flexible notion of comments and large workspace area provide space for organizing and manipulating any comments or document excerpts the user may have created.”

In addition to traditional zooming and panning, the user can create a magnifying glass in the workspace by tapping with three fingers. The magnifying glass zooms in on select areas while allowing the user to maintain an awareness of the workspace as a whole. Users can manipulate the magnifying glass with simple multi-touch gestures, such as pinching or stretching to resize the lens, or rotating to change the zoom level -- like the zoom lens of a camera. Users can position, resize and control the zoom level of the magnifying glasses in a continuous motion by movements of the hand alone.

The ability to move within a document, search for text, turn a page, or flip between locations to compare parts of a text is also important for active reading. To complete these actions, LiquidText allows users to collapse text, dog-ear text and create magnified views of text.

“In contrast to traditional document viewing software, in which users must create separate panes and scroll them individually, LiquidText’s functionality lets a user view two or more document areas with just one action, parallelizing an otherwise serial task,” explained Edwards.

Since developing their initial prototype, the researchers have refined the software based on feedback from designers and human factors professionals, and active readers that included managers, lawyers, students and strategists.

Tashman is currently working with Georgia Tech’s Enterprise Innovation Institute to form a startup company to commercialize the technology. The $15,000 Georgia Tech Edison Prize he won, along with $43,000 in grants from the Georgia Research Alliance, will help launch the new company that plans to introduce LiquidText to the public later this year.

The Georgia Tech Edison Prize was established to encourage formation of startup companies based on technology developed at Georgia Tech, and was made possible by a multi-year grant from the Charles A. Edison Fund, named for the inventor’s son. Presentation of the prize, the second to be awarded from the Fund, was part of the Georgia Tech Graduate Research and Innovation Conference held Feb. 8, 2011.

This project is supported in part by the National Science Foundation (Award No. IIS-0705569). The content is solely the responsibility of the principal investigator and does not necessarily represent the official views of the NSF.

Research News & Publications Office
Georgia Institute of Technology
75 Fifth Street, N.W., Suite 314
Atlanta, Georgia 30308 USA
Media Relations Contacts: Abby Robinson (abby@innovate.gatech.edu; 404-385-3364) or John Toon (jtoon@gatech.edu; 404-894-6986)

Writer: Abby Robinson

Abby Robinson | Newswise Science News
Further information:
http://www.gatech.edu

More articles from Information Technology:

nachricht Construction of practical quantum computers radically simplified
05.12.2016 | University of Sussex

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>