Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Light: Information's new friend

10.06.2016

African researchers demonstrate a 100x increase in the amount of information that can be 'packed into light'

The rise of big data and advances in information technology has serious implications for our ability to deliver sufficient bandwidth to meet the growing demand.


Data of the Rubik's cube sent and received.

Credit: Wits University

Researchers at the University of the Witwatersrand in Johannesburg, South Africa, and the Council for Scientific and Industrial Research (CSIR) are looking at alternative sources that will be able to take over where traditional optical communications systems are likely to fail in future.

In their latest research, published online today (10 June 2016) in the scientific journal, Scientific Reports, the team from South Africa and Tunisia demonstrate over 100 patterns of light used in an optical communication link, potentially increasing the bandwidth of communication systems by 100 times.

The work is freely available online at http://www.nature.com/articles/srep27674 [This link will only be available once the paper is published online.]

The idea was conceived by Professor Andrew Forbes from Wits University, who led the collaboration. The key experiment was performed by Dr Carmelo Rosales-Guzman, a Research Fellow in the Structured Light group in the Wits School of Physics, and Dr Angela Dudley of the CSIR, an honorary academic at Wits.

The first experiments on the topic were carried out by Abderrahmen Trichili of Sup'Com (Tunisia) as a visiting student to South Africa as part of an African Laser Centre funded research project. The other team members included Bienvenu Ndagano (Wits), Dr Amine Ben Salem (Sup'Com) and Professor Mourad Zghal (Sup'Com), all of who contributed significantly to the work.

Bracing for the bandwidth ceiling

Traditional optical communication systems modulate the amplitude, phase, polarisation, colour and frequency of the light that is transmitted. Yet despite these technologies, we are predicted to reach a bandwidth ceiling in the near future.

But light also has a "pattern" - the intensity distribution of the light, that is, how it looks on a camera or a screen.

Since these patterns are unique, they can be used to encode information:

  • pattern 1 = channel 1 or the letter A,
  • pattern 2 = channel 2 or the letter B, and so on.

     

What does this mean?

That future bandwidth can be increased by precisely the number of patterns of light we are able to use.

Ten patterns mean a 10x increase in existing bandwidth, as 10 new channels would emerge for data transfer.

At the moment modern optical communication systems only use one pattern. This is due to technical hurdles in how to pack information into these patterns of light, and how to get the information back out again.

How the research was done

In this latest work, the team showed data transmission with over 100 patterns of light, exploiting three degrees of freedom in the process.

They used digital holograms written to a small liquid crystal display (LCD) and showed that it is possible to have a hologram encoded with over 100 patterns in multiple colours.

"This is the highest number of patterns created and detected on such a device to date, far exceeding the previous state-of-the-art," says Forbes.

One of the novel steps was to make the device 'colour blind', so the same holograms can be used to encode many wavelengths.

According to Rosales-Guzman to make this work "100 holograms were combined into a single, complex hologram. Moreover, each sub-hologram was individually tailored to correct for any optical aberrations due to the colour difference, angular offset and so on".

What's next?

The next stage is to move out of the laboratory and demonstrate the technology in a real-world system.

"We are presently working with a commercial entity to test in just such an environment," says Forbes. The approach of the team could be used in both free-space and optical fibre networks.

###

Further information:

Project support

This project was supported by the African Laser Centre, a virtual centre funded by the South African Department of Science and Technology (DST) to support research collaborations between African countries in the field of photonics.

Paper abstract

Title: Optical communication beyond orbital angular momentum
Abderrahmen Trichili, Carmelo Rosales-Guzmán, Angela Dudley, Bienvenu Ndagano, Amine Ben Salem, Mourad Zghal and Andrew Forbes
Mode division multiplexing (MDM) is mooted as a technology to address future bandwidth issues, and has been successfully demonstrated in free space using spatial modes with orbital angular momentum (OAM). To further increase the data transmission rate, more degrees of freedom are required to form a densely packed mode space. Here we move beyond OAM and demonstrate multiplexing and demultiplexing of over 100 modes using the radial and azimuthal degrees of freedom. By creating wavelength independent holograms we are able to demonstrate this technique on a spatial light modulator. Our results offer a route to higher bit rates for next generation optical networks.

Multimedia pack: Download images, video from Dropbox via this link: http://bit.ly/1Ybtj0X

Media interviews:
Professor Andrew Forbes
School of Physics
University of the Witwatersrand, Johannesburg
+27 82 823 1836
andrew.forbes@wits.ac.za

Media Contact

Erna van Wyk
erna.vanwyk@wits.ac.za
27-117-174-023

 @Wits_News

http://www.wits.ac.za 

Erna van Wyk | EurekAlert!

More articles from Information Technology:

nachricht Cutting edge research for the industries of tomorrow – DFKI and NICT expand cooperation
21.03.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Molecular motor-powered biocomputers
20.03.2017 | Technische Universität Dresden

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>