Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Better lasers for optical communications

12.04.2011
A new laser procedure could boost optical fiber communications; this technique could become essential for the future expansion of the Internet. It also opens up new frontiers in basic research

Long-distance, high speed communications depend on lasers. But when information is transmitted down fiber optic cables, it's critical that the signal be clear enough to be decoded at the other end.

Two factors are important in this respect: the color of the light, otherwise known as the wavelength, and the orientation of the light wave, known as polarization. A team from EPFL and the Swiss Federal Laboratories for Materials Science and Technology (EMPA) has developed a technique that improves control over these two parameters.

"All indications are that this technology could be useful at both industrial and scientific levels," explains Eli Kapon, head of EPFL's Laboratory of Physics of Nanostructures. More than fifteen years of research were required to arrive at this result, work that "has caused many headaches and demanded significant investment."

To obtain the right wavelength, the EPFL researchers adapted the lasers' size. In parallel, the EMPA scientists designed a nanometer-scale grating for the emitter in order to control the light's polarization. They were able to achieve this feat by vaporizing long molecules containing gold atoms with a straw-like tool operating above the lasers.

Using an electron microscope, they were able to arrange and attach gold particles to the surface of each laser with extreme precision. Thus deposited, the grating serves as a filter for polarizing the light, much like the lenses of sunglasses are used to polarize sunlight.

Industrial and scientific advantages

This technique, developed in collaboration with EMPA, has many advantages. It allows a high-speed throughput of several gigabits a second with reduced transmission errors. The lasers involved are energy-efficient, consuming up to ten times less than their traditional counterparts, thanks to their small size. The technique is very precise and efficient, due to the use of the electron microscope.

"This progress is very satisfying," adds Kapon, who also outlines some possible applications. "These kinds of lasers are also useful for studying and detecting gases using spectroscopic methods. We will thus make gains in precision by improving detector sensitivity."

Links:
http://lpn.epfl.ch/
http://lpn.epfl.ch/research/index_1.php?research_no=7
http://www.empa.ch/
Source:
Ivo Utke, Martin G. Jenke, Christian Röling, Peter H. Thiesen, Vladimir Iakovlev, Alexei Sirbu, Alexandru Mereuta, Andrei Caliman and Eli Kapon, Polarisation stabilisation of vertical cavity surface emitting lasers by minimally invasive focused electron beam triggered chemistry, Nanoscale, 2011.

http://pubs.rsc.org/en/content/articlelanding/2011/nr/c1nr10047e

Prof. Eli Kapon | EurekAlert!
Further information:
http://www.epfl.ch

More articles from Information Technology:

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

nachricht Researchers catch extreme waves with higher-resolution modeling
15.02.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>