Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser Security for the Internet

24.03.2010
TAU scientist invents a digital security tool good enough for the CIA -- and for you

A British computer hacker equipped with a "Dummies" guide recently tapped into the Pentagon. As hackers get smarter, computers get more powerful and national security is put at risk. The same goes for your own personal and financial information transmitted by phone, on the Internet or through bank machines.

Now a new invention developed by Dr. Jacob Scheuer of Tel Aviv University's School of Electrical Engineering promises an information security system that can beat today's hackers — and the hackers of the future — with existing fiber optic and computer technology. Transmitting binary lock-and-key information in the form of light pulses, his device ensures that a shared key code can be unlocked by the sender and receiver, and absolutely nobody else. He will present his new findings to peers at the next laser and electro-optics conference this May at the Conference for Lasers and Electro-Optics (CLEO) in San Jose, California.

"When the RSA system for digital information security was introduced in the 1970s, the researchers who invented it predicted that their 200-bit key would take a billion years to crack," says Dr. Scheuer. "It was cracked five years ago. But it's still the most secure system for consumers to use today when shopping online or using a bank card. As computers become increasingly powerful, though, the idea of using the RSA system becomes more fragile."

Plugging a leak in a loophole

Dr. Sheuer says the solution lies in a new kind of system to keep prying eyes off secure information. "Rather than developing the lock or the key, we've developed a system which acts as a type of key bearer," he explains.

But how can a secure key be delivered over a non-secure network — a necessary step to get a message from one user to another? If a hacker sees how a key is being sent through the system, that hacker could be in a position to take the key. Dr. Sheuer has found a way to transmit a binary code (the key bearer) in the form of 1s and 0s, but using light and lasers instead of numbers. "The trick," says Dr. Scheuer, "is for those at either end of the fiber optic link to send different laser signals they can distinguish between, but which look identical to an eavesdropper."

New laser is key

Dr. Scheuer developed his system using a special laser he invented, which can reach over 3,000 miles without any serious parts of the signal being lost. This approach makes it simpler and more reliable than quantum cryptography, a new technology that relies on the quantum properties of photons, explains Dr. Scheuer. With the right investment to test the theory, Dr. Scheuer says it is plausible and highly likely that the system he has built is not limited to any range on earth, even a round-the-world link, for international communications.

"We've already published the theoretical idea and now have developed a preliminary demonstration in my lab. Once both parties have the key they need, they could send information without any chance of detection. We were able to demonstrate that, if it's done right, the system could be absolutely secure. Even with a quantum computer of the future, a hacker couldn't decipher the key," Dr. Scheuer says.

Keep up with the latest AFTAU news on Twitter: http://www.twitter.com/AFTAUnews

George Hunka | EurekAlert!
Further information:
http://www.aftau.org

More articles from Information Technology:

nachricht Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale
18.01.2017 | The Hebrew University of Jerusalem

nachricht Data analysis optimizes cyber-physical systems in telecommunications and building automation
18.01.2017 | Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>