Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser process simulation available as app for first time

23.11.2015

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer clusters, they are now able to simulate a wide variety of processes with a good degree of reliability. However, this kind of elaborate work is hardly suitable for ordinary users in factories, who tend to rely on the system providers’ technology tables when setting up new processes.


Picture 1: Reduced drilling simulation with beam distribution. The red line shows the good correspondence with the experimental result.

Source: Fraunhofer ILT, Aachen/Germany


In AsymptoticDrill, the new license software, many parameters can be changed using sliders even with a simplified model.

Source: Fraunhofer ILT, Aachen/Germany

New software slashes computing time

Simulation experts at the Fraunhofer Institute for Laser Technology ILT have developed new software that requires much less in the way of resources, such that it can even run on tablet computers and smartphones. Individual parameters can be adjusted using sliders – the simulation result appears in an adjacent window and changes in real time.

This is made possible by an application-specific reduction of the computing models, a process in which certain simplifications are introduced depending on the respective application. Because these simplifications dramatically reduce the complexity of calculations, they produce a result much more quickly.

Example: laser drilling

Conventional simulation programs deliver a complex representation of the processes involved in the interaction of laser beam and material. More than anything else, users are interested in things like how the conicity of a drill hole changes when parameters such as focal position or spot diameter are adjusted. The simplified simulation allows the influence of such parameters to be properly investigated, and the results match up with experimental data very well: Picture 1 shows just such a simulation using the new computing model compared to the thin section of a drill hole.

In contrast to earlier methods and to regular experiments, now the effects of changed parameters are displayed immediately. Changing individual parameters is virtually child’s play, and the results appear instantaneously in the adjacent window (Picture 2).
This means that the simulation can be carried out directly at the laser machine. Time-intensive experiments are no longer required and set-up processes can be completed much faster.

Simulation for advanced users: metamodeling

The high speed of simulation also opens up a range of entirely different options, such as metamodeling. Suitable for complex simulations with many parameters, metamodeling involves generating high-dimensional data sets with the parameters and several evaluation criteria for process and product quality. These sets can then be used to create individual process maps (hyper slices) that show the dependency of the results of individual parameter pairs. The quality of a result is always displayed using color coding so that optimum parameters are immediately visible.

This advanced simulation makes it possible to find global and local extreme values – for example, parameter sets for best and worst quality – through mathematical manipulation of the data sets. Such simultaneous optimization of multiple parameters is scarcely possible by experimental means. This means that new methods in manufacturing such as those of iterative design can be executed much faster.

Customized software for use in factories

The idea for the new software developed out of a particular order for a large customer. Further contracts have been concluded in the meantime, but the software is available for all customers. Depending on the planned application, it will be specially modified by the experts at Fraunhofer ILT to facilitate optimum results. The know-how resides in the skillful simplification of traditional models.

However, the software’s potential does not stop there; time-intensive calculations exist in many areas of industry. In the automotive sector, for example, the simulation of crash tests still uses up considerable computing capacity. Transferring the principle of reduced models promises substantial savings there, too.

Contact

Dipl.-Phys. Torsten Hermanns
Chair for Nonlinear Dynamics of
Laser Processing NLD
RWTH Aachen University
Phone +49 241 8906-8367
hermanns.torsten@nld.rwth-aachen.de

Prof. Dr. Wolfgang Schulz
Head of the Chair for Nonlinear Dynamics of
Laser Processing NLD
RWTH Aachen University
Group Manager Simulation and Modeling
at the Fraunhofer ILT
Telephone +49 241 8906-204
wolfgang.schulz@ilt.fraunhofer.de

Fraunhofer Institute for Laser Technology ILT
Steinbachstraße 15
52074 Aachen, Germany

Weitere Informationen:

http://www.ilt.fraunhofer.de
http://www.nld.rwth-aachen.de

Petra Nolis | Fraunhofer-Institut für Lasertechnik ILT

Further reports about: ILT Laser Laser Processing Lasertechnik Nonlinear factories processes

More articles from Information Technology:

nachricht Gecko adhesion technology moves closer to industrial uses
13.12.2017 | Georgia Institute of Technology

nachricht New silicon structure opens the gate to quantum computers
12.12.2017 | Princeton University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Gecko adhesion technology moves closer to industrial uses

13.12.2017 | Information Technology

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure

13.12.2017 | Physics and Astronomy

Research reveals how diabetes in pregnancy affects baby's heart

13.12.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>