Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser process simulation available as app for first time

23.11.2015

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer clusters, they are now able to simulate a wide variety of processes with a good degree of reliability. However, this kind of elaborate work is hardly suitable for ordinary users in factories, who tend to rely on the system providers’ technology tables when setting up new processes.


Picture 1: Reduced drilling simulation with beam distribution. The red line shows the good correspondence with the experimental result.

Source: Fraunhofer ILT, Aachen/Germany


In AsymptoticDrill, the new license software, many parameters can be changed using sliders even with a simplified model.

Source: Fraunhofer ILT, Aachen/Germany

New software slashes computing time

Simulation experts at the Fraunhofer Institute for Laser Technology ILT have developed new software that requires much less in the way of resources, such that it can even run on tablet computers and smartphones. Individual parameters can be adjusted using sliders – the simulation result appears in an adjacent window and changes in real time.

This is made possible by an application-specific reduction of the computing models, a process in which certain simplifications are introduced depending on the respective application. Because these simplifications dramatically reduce the complexity of calculations, they produce a result much more quickly.

Example: laser drilling

Conventional simulation programs deliver a complex representation of the processes involved in the interaction of laser beam and material. More than anything else, users are interested in things like how the conicity of a drill hole changes when parameters such as focal position or spot diameter are adjusted. The simplified simulation allows the influence of such parameters to be properly investigated, and the results match up with experimental data very well: Picture 1 shows just such a simulation using the new computing model compared to the thin section of a drill hole.

In contrast to earlier methods and to regular experiments, now the effects of changed parameters are displayed immediately. Changing individual parameters is virtually child’s play, and the results appear instantaneously in the adjacent window (Picture 2).
This means that the simulation can be carried out directly at the laser machine. Time-intensive experiments are no longer required and set-up processes can be completed much faster.

Simulation for advanced users: metamodeling

The high speed of simulation also opens up a range of entirely different options, such as metamodeling. Suitable for complex simulations with many parameters, metamodeling involves generating high-dimensional data sets with the parameters and several evaluation criteria for process and product quality. These sets can then be used to create individual process maps (hyper slices) that show the dependency of the results of individual parameter pairs. The quality of a result is always displayed using color coding so that optimum parameters are immediately visible.

This advanced simulation makes it possible to find global and local extreme values – for example, parameter sets for best and worst quality – through mathematical manipulation of the data sets. Such simultaneous optimization of multiple parameters is scarcely possible by experimental means. This means that new methods in manufacturing such as those of iterative design can be executed much faster.

Customized software for use in factories

The idea for the new software developed out of a particular order for a large customer. Further contracts have been concluded in the meantime, but the software is available for all customers. Depending on the planned application, it will be specially modified by the experts at Fraunhofer ILT to facilitate optimum results. The know-how resides in the skillful simplification of traditional models.

However, the software’s potential does not stop there; time-intensive calculations exist in many areas of industry. In the automotive sector, for example, the simulation of crash tests still uses up considerable computing capacity. Transferring the principle of reduced models promises substantial savings there, too.

Contact

Dipl.-Phys. Torsten Hermanns
Chair for Nonlinear Dynamics of
Laser Processing NLD
RWTH Aachen University
Phone +49 241 8906-8367
hermanns.torsten@nld.rwth-aachen.de

Prof. Dr. Wolfgang Schulz
Head of the Chair for Nonlinear Dynamics of
Laser Processing NLD
RWTH Aachen University
Group Manager Simulation and Modeling
at the Fraunhofer ILT
Telephone +49 241 8906-204
wolfgang.schulz@ilt.fraunhofer.de

Fraunhofer Institute for Laser Technology ILT
Steinbachstraße 15
52074 Aachen, Germany

Weitere Informationen:

http://www.ilt.fraunhofer.de
http://www.nld.rwth-aachen.de

Petra Nolis | Fraunhofer-Institut für Lasertechnik ILT

Further reports about: ILT Laser Laser Processing Lasertechnik Nonlinear factories processes

More articles from Information Technology:

nachricht Safe glide at total engine failure with ELA-inside
27.02.2017 | FernUniversität in Hagen

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Safe glide at total engine failure with ELA-inside

27.02.2017 | Information Technology

Fraunhofer IFAM expands its R&D work on Coatings for protection against corrosion and marine growth

27.02.2017 | Materials Sciences

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>