Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Largest neuronal network simulation to date achieved using Japanese supercomputer

05.08.2013
By exploiting the full computational power of the Japanese supercomputer, K Computer, researchers from the RIKEN HPCI Program for Computational Life Sciences, the Okinawa Institute of Technology Graduate University (OIST) in Japan and Forschungszentrum Jülich in Germany have carried out the largest general neuronal network simulation to date.

The simulation was made possible by the development of advanced novel data structures for the simulation software NEST. The relevance of the achievement for neuroscience lies in the fact that NEST is open-source software freely available to every scientist in the world.

Using NEST, the team, led by Markus Diesmann in collaboration with Abigail Morrison both now with the Institute of Neuroscience and Medicine at Jülich, succeeded in simulating a network consisting of 1.73 billion nerve cells connected by 10.4 trillion synapses. To realize this feat, the program recruited 82,944 processors of the K Computer. The process took 40 minutes, to complete the simulation of 1 second of neuronal network activity in real, biological, time.

Although the simulated network is huge, it only represents 1% of the neuronal network in the brain. The nerve cells were randomly connected and the simulation itself was not supposed to provide new insight into the brain - the purpose of the endeavor was to test the limits of the simulation technology developed in the project and the capabilities of K. In the process, the researchers gathered invaluable experience that will guide them in the construction of novel simulation software.

This achievement gives neuroscientists a glimpse of what will be possible in the future, with the next generation of computers, so called exa-scale computers.

“If peta-scale computers like the K Computer are capable of representing 1% of the network of a human brain today, then we know that simulating the whole brain at the level of the individual nerve cell and its synapses will be possible with exa-scale computers hopefully available within the next decade,” explains Diesmann.

Memory of 250.000 PCs

Simulating a large neuronal network and a process like learning requires large amounts of computing memory. Synapses, the structures at the interface between two neurons, are constantly modified by neuronal interaction and simulators need to allow for these modifications.

More important than the number of neurons in the simulated network is the fact that during the simulation each synapse between excitatory neurons was supplied with 24 bytes of memory. This enabled an accurate mathematical description of the network.

In total, the simulator coordinated the use of about 1 petabyte of main
memory, which corresponds to the aggregated memory of 250.000 PCs.
NEST
NEST is a widely used, general-purpose neuronal network simulation software available to the community as open source. The team ensured that their optimizations were of general character, independent of a particular hardware or neuroscientific problem. This will enable neuroscientists to use the software to investigate neuronal systems using normal laptops, computer clusters or, for the largest systems, supercomputers, and easily exchange their model descriptions.

A large, international project

Work on optimizing NEST for the K Computer started in 2009 while the supercomputer was still under construction. Shin Ishii, leader of the brain science projects on K at the time, explains that “Having access to the established supercomputers at Jülich, JUGENE and JUQUEEN, was essential, to prepare for K and cross-check results.”

Mitsuhisa Sato, of the RIKEN Advanced Institute for Computer Science, points out that “Many researchers at many different Japanese and European institutions have been involved in this project, but the dedication of Jun Igarashi now at OIST, Gen Masumoto now at the RIKEN Advanced Center for Computing and Communication, Susanne Kunkel and Moritz Helias now at Forschungszentrum Jülich was key to the success of the endeavor.”

Paving the way for future projects

Kenji Doya of OIST, currently leading a project aiming to understand the neural control of movement and the mechanism of Parkinson's disease, says “The new result paves the way for combined simulations of the brain and the musculoskeletal system using the K Computer. These results demonstrate that neuroscience can make full use of the existing peta-scale supercomputers.”

The achievement on K provides new technology for brain research in Japan and is encouraging news for the Human Brain Project (HBP) of the European Union, scheduled to start this October. The central supercomputer for this project will be based at Forschungszentrum Jülich.

The researchers in Japan and Germany are planning on continuing their successful collaboration in the upcoming era of exa-scale systems.

For more information please contact:

Prof. Markus Diesmann
Institute of Neuroscience and Medicine, Computational and Systems Neuroscience (INM-6), Forschungszentrum Jülich
Tel: +49 (0)2461 61-9301
Email: diesmann@fz-juelich.de
Juliette Savin
Global Relations Office
RIKEN
Tel: +81-(0)48-462-1225
Mobile phone: +81-(0)808895-2136
Email: pr@riken.jp
Kaoru Natori
Media Section Leader, Communication and PR Division, OIST
Tel: +81-(0)98-966-2389
Mobile phone : +81-(0)806497-2711
E-Mail: kaoru.natori@oist.jp
About RIKEN
RIKEN is Japan's largest research institute for basic and applied research. Over 2500 papers by RIKEN researchers are published every year in leading scientific and technical journals, covering a broad spectrum of disciplines including physics, chemistry, biology, medical science and engineering. RIKEN's research environment and strong emphasis on interdisciplinary collaboration and globalization has earned a reputation for scientific excellence worldwide.

Website: www.riken.jp/en/ Find us on Twitter at @riken_en

About the K Computer
The K Computer is Japan’s most powerful supercomputer developed in partnership with electronics firm Fujitsu. It boasts a computational power of 1016petaflops, or 10 billion operations per second. The supercomputer’s exceptional simulation precision and computational speed benefit research in a broad range of fields that use computational science, ranging from pharmaceutical science to nanoscience and disaster prevention.
About Forschungszentrum Jülich
Forschungszentrum Jülich pursues cutting-edge interdisciplinary research to address pressing issues of the present, most of all the future energy supply. With its competence in materials science and simulation and its expertise in physics, nanotechnology and information technology and also in the biosciences and brain research, Jülich is developing a basis for the key technologies of tomorrow. Forschungszentrum Jülich helps to solve the grand challenges facing society in the fields of energy and the environment, health and information technology. With a staff of almost 5,000, Jülich – a member of the Helmholtz Association – is one of the large interdisciplinary research centres in Europe.
About OIST
The Okinawa Institute of Science and Technology (OIST) is a new graduate university established in November 2011 with the aim to conduct internationally outstanding education and research in science and technology, and thus contribute to the self-sustaining development of Okinawa and promote the advancement of science and technology in Japan and throughout the world. The first graduate class commenced in September 2012 with 34 students from 18 countries and regions. Its education and research program is cross-disciplinary and aims to be at the leading edge. As of July 2013, 45 research units (with over 350 researchers, of whom approximately 150 are international) have been launched so far, with research in five major areas of neuroscience; molecular, cell, and developmental biology; mathematical and computational sciences, environmental and ecological sciences; and physics and chemistry.

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Information Technology:

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

nachricht New standard helps optical trackers follow moving objects precisely
23.11.2016 | National Institute of Standards and Technology (NIST)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>