Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Large Grant for Small Satellites

22.10.2012
Once again a top award has been given to a researcher of the University of Würzburg: Computer scientist Klaus Schilling wins a Euro 2.5 million research grant to study innovative technologies for picosatellites that work together. The grant is awarded by the European Research Council.

The field of satellite technology is facing an upheaval that has already taken place in the computer industry: The mainframe computers of the 70ies have developed into small computers connected over the Internet.


Multiple picosatellites and ground controllers are controlled to work together in a high-capacity network: The computer scientists of the University of Würzburg are working to achieve this goal.

Photo: Informatics Institute, University of Würzburg

"A similar paradigm change is anticipated for the satellite technology: away from the current conventional large satellites to networked systems consisting of multiple coordinated picosatellites", says Professor Klaus Schilling from the Informatics Institute of the University of Würzburg. In light of this change, he believes that modern telematics methods have to be studied and implemented.

Experts for picosatellites

Schilling's team is perfectly familiar with picosatellites: Since 2005, the team has already launched two University Würzburg experimental satellites (short: UWE) into orbit, weighing only one kilogram and having about the size of a milk carton. A third UWE satellite is expected to be launched early 2013, and the team is currently working on UWE number four. Back then, UWE-1 had been the first German picosatellite and can now be admired in the Deutsches Museum in Munich.

"Each picosatellite on its own has a limited capacity. But when several of these satellites work together, we can achieve an impressive total performance", Schilling explains. The technology enables, for instance, observing spots on the earth's surface from different viewing directions to create three-dimensional images. Low-priced, globe-spanning telecommunication networks are another goal the networked picosatellites are expected to achieve in the future.

The goal: a world premier

Over the next five years, the Würzburg researchers will devote their research activities to paving the way for such applications. This requires the corresponding methods of control and communication technology to be further developed. It is planned to conclude the research grant by showing the efficiency of these innovative approaches by deploying a "miniature fleet" of four picosatellites in orbit for the first time in the world: The goal is to keep the satellites in formation using advanced control technologies to enable an optimum flow of information in the network of satellites and ground controllers.

The "ERC Advanced Grants"

Schilling's research plans are financially supported by a EURO 2.5 million "ERC Advanced Grant". With this grant the European Research Council (ERC) supports scientists from all over the world who are leading in their field and wish to realize seminal and innovative projects in Europe.

The "Advanced Grants" were introduced in 2008. In addition to Klaus Schilling, other scientists from the University of Würzburg have already received the award to date: biomedical scientist Martin Lohse, biophysicist Rainer Hedrich, physicist Laurens Molenkamp and chemist Holger Braunschweig.

Contact

Prof. Dr. Klaus Schilling, Informatics VII: Robotics and Telematics of the University of Würzburg, Phone +49-931-31-86647, schi@informatik.uni-wuerzburg.de

Robert Emmerich | Uni Würzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Information Technology:

nachricht New software speeds origami structure designs
12.10.2017 | Georgia Institute of Technology

nachricht Seeing the next dimension of computer chips
11.10.2017 | Osaka University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>