Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Knowledge Computing offers new perspectives in scientific computing

Fraunhofer Institute for Algorithms and Scientific Computing (SCAI) and Jülich Supercomputing Centre (JSC) have used automated annotation software on grid-connected supercomputers to perform powerful queries in more than 50,000 pharmaceutical patents.

Researchers at the Fraunhofer Institute for Algorithms and Scientific Computing (SCAI) and at the Jülich Supercomputing Centre (JSC) of Forschungszentrum Jülich have used their substantial computing grid infrastructures for a new application in scientific computing: the large-scale annotation of biomedical and chemical texts and images in pharmaceutical patents. This will allow patent searches of an unparalleled power. Now, queries provide interesting insights into intersections between biology and chemistry, and the analysis of chemistry is truly multi-modal in the sense that text- and image-based information can be analyzed simultaneously.

More than 50,000 patents describing inventions in pharmaceutical chemistry have been processed on the large-scale computing grid infrastructures at SCAI and JSC. Automated "named entity recognition" services have identified and annotated:

o biological entities in text (e.g. protein names; gene names; gene polymorphisms; cell types),

o medical entities in text (e.g. disease names; pathology terms; risk factor terminology) as well as

o chemical information in text (e.g. drug names; expressions following the naming standards of the International Union of Pure and Applied Chemistry (IUPAC)) and

o images (e.g. chemical structure depictions).

The grid middleware UNICORE (Uniform Interface to Computing Resources) was used to manage the annotation services in the grid infrastructure, to control the streams of input and output data from the patents database to the annotation services, and to monitor the overall progress.

"This large-scale experiment opens new perspectives in scientific computing," says Prof. Dr. Martin Hofmann-Apitius, head of the Department of Bioinformatics at Fraunhofer SCAI. "This type of application goes way beyond the usual simulation applications that we are used to in the scientific computing community."

So far, text mining applications have only been run on bibliographic databases of life sciences and biomedical information such as MEDLINE. But the extension towards a multimodal analysis including annotation of text- and image-based information in full text documents on grid infrastructures has never been done before.

"We are pleased to see that our institute, which has a strong record in numerical simulation, has contributed to a new field of applications for supercomputers: what we call knowledge computing is likely to become a new discipline on its own," emphasizes Prof. Dr. Ulrich Trottenberg, Director of Fraunhofer SCAI.

"UNICORE made it possible to run this experiment at such a large scale in computing grid infrastructures at SCAI and JSC," says Dr. Achim Streit, head of Distributed Systems and Grid Computing at JSC. "The powerful workflow and data management capabilities of UNICORE allowed to annotate the patents in a seamless and automated way. A supercomputer connected by UNICORE to the infrastructure of the German Grid Initiative (D-Grid) was used to perform the knowledge extraction. This initial step of the experiment demonstrates what is possible today and shows the potential for more complex production runs in the future, using HPC systems connected in grid infrastructures".

"This is a very good example of how powerful supercomputers at JSC equipped with world-class grid technologies like UNICORE can generate synergies to enable new fields of research. I am proud that JSC is a member of the international UNICORE open source community and leads its development," explains Prof. Dr. Dr. Thomas Lippert, Director of JSC.

The team at SCAI, led by Dr. Marc Zimmermann for the image analysis annotators and by Dr. Juliane Fluck and Dr. Christoph Friedrich for the text analytics part, is currently working on the in-depth analysis of the meta-information generated in the course of this large-scale in silico-experiment. Their colleague on the side of JSC in Jülich, Mathilde Romberg, is happy that after weeks of intensive work the first "production runs" have been completed. However, the teams on both sides know that there are another 1.5 million patents waiting for them.

Prof. Dr. Martin Hofmann-Apitius
Head of the Department of Bioinformatics
Fraunhofer Institute for Algorithms and Scientific Computing (SCAI)
53754 Sankt Augustin, Germany
phone +49-2241-14-2802, fax +49-2241-14-2656

Michael Krapp | Fraunhofer Gesellschaft

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>