Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Kinect Makes Dangerous Work Processes Safer

17.07.2013
Siemens is using a Microsoft Kinect sensor familiar from computer games in a virtual planning system for work processes.

Kinect technology recognizes a person's movements and posture and transfers them to an avatar in a virtual environment. In the same way that a player moves intuitively within the scenes of a computer game, technicians can use Kinect to simulate movements in the workplace.



In its Product Lifecycle Management Software, Siemens Industry already provides interfaces to systems that precisely measure people's movements. Because such solutions are frequently complex, however, Siemens has now developed a version based on the Kinect sensor that is more user-friendly, although not as precise. The new solution makes the system available for other industrial applications, such as the planning of dangerous tasks.

Only a few major industries currently use systems that digitally track movements. The automotive industry is one example, which employs such systems to make assembly line workplaces more ergonomic or to design vehicle interiors. With the help of multiple cameras, electromagnetic sensors or full-body suits, the systems can measure the movements of people wearing special markers to within a single millimeter.

The technology is complex and can only be operated by appropriately trained staff. To develop a simpler system based on Kinect technology, the engineers from Siemens had to appropriately process the data. Although the Kinect sensor recognizes movements, it doesn't measure them precisely. That's why the developers use libraries containing simulation models for typical movements and combine these models with the information supplied by the Kinect sensor.

The first application to be created was a solution for planning service and maintenance work at nuclear power plants in the U.S. The application aims to ensure workers are exposed to a level of radiation that is as low as reasonably achievable (ALARA). To do this, technicians or planners operate the Kinect sensor-equipped simulation program and carry out specific work within a virtual environment. In reality, these environments would be exposed to radiation due to radioactivity. The program calculates the radiation dose that the virtual technician receives. The system helps the planners vary the individual work steps and the design of the workplace in order to reduce the dose to the lowest reasonably achievable level. Similarly, the system could also be used to plan work in chemically contaminated environments or to conduct traditional ergonomics tests.

Dr. Norbert Aschenbrenner | Siemens InnovationNews
Further information:
http://www.siemens.com/innovationnews

More articles from Information Technology:

nachricht Researchers 3-D print electronics and cells directly on skin
26.04.2018 | University of Minnesota

nachricht Cheap 3-D printer can produce self-folding materials
25.04.2018 | Carnegie Mellon University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>