Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Keeping Secrets in a World of Spies and Mistrust

31.03.2014

Revelations of the extent of government surveillance have thrown a spotlight on the security – or lack thereof – of our digital communications.

Even today’s encrypted data is vulnerable to technological progress. What privacy is ultimately possible? In the 27 March issue of Nature, the weekly international journal of science, researchers Artur Ekert and Renato Renner review what physics tells us about keeping our secrets secret.

In the history of secret communication, the most brilliant efforts of code-makers have been matched time and again by the ingenuity of code-breakers. Sometimes we can even see it coming. We already know that one of today’s most widely used encryption systems, RSA, will become insecure once a quantum computer is built.

But that story need not go on forever. “Recent developments in quantum cryptography show that privacy is possible under stunningly weak assumptions about the freedom of action we have and the trustworthiness of the devices we use,” says Ekert, Professor of Quantum Physics at the University of Oxford, UK, and Director of the Centre for Quantum Technologies at the National University of Singapore. He is also the Lee Kong Chian Centennial Professor at the National University of Singapore.

Over 20 years ago, Ekert and others independently proposed a way to use the quantum properties of particles of light to share a secret key for secure communication. The key is a random sequence of 1s and 0s, derived by making random choices about how to measure the particles (and some other steps), that is used to encrypt the message. In the Nature Perspective, he and Renner describe how quantum cryptography has since progressed to commercial prospect and into new theoretical territory.

Even though privacy is about randomness and trust, the most surprising recent finding is that we can communicate secretly even if we have very little trust in our cryptographic devices – imagine that you buy them from your enemy – and in our own abilities to make free choices – imagine that your enemy is also manipulating you. Given access to certain types of correlations, be they of quantum origin or otherwise, and having a little bit of free will, we can protect ourselves. What’s more, we can even protect ourselves against adversaries with superior technology that is unknown to us.

"As long as some of our choices are not completely predictable and therefore beyond the powers that be, we can keep our secrets secret," says Renner, Professor of Theoretical Physics at ETH Zurich, Switzerland. This arises from a mathematical discovery by Renner and his collaborator about 'randomness amplification': they found that a quantum trick can turn some types of slightly-random numbers into completely random numbers. Applied in cryptography, such methods can reinstate our abilities to make perfectly random choices and guarantee security even if we are partially manipulated.

“As well as there being exciting scientific developments in the past few years, the topic of cryptography has very much come out of the shadows. It’s not just spooks talking about this stuff now,” says Ekert, who has worked with and advised several companies and government agencies.

The semi-popular essay cites 68 works, from the writings of Edgar Allen Poe on cryptography in 1841, through the founding papers of quantum cryptography in 1984 and 1991, right up to a slew of results from 2013.

The authors conclude that “The days we stop worrying about untrustworthy or incompetent providers of cryptographic services may not be that far away”.

Carolyn FONG
Senior Manager (Media Relations)
Office of Corporate Relations
National University of Singapore
DID: +65 6516 5399
Email: carolyn@nus.edu.sg

Carolyn FONG | newswise
Further information:
http://www.nus.edu.sg

Further reports about: Quantum Quantum Technologies encrypted data randomness

More articles from Information Technology:

nachricht Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale
18.01.2017 | The Hebrew University of Jerusalem

nachricht Data analysis optimizes cyber-physical systems in telecommunications and building automation
18.01.2017 | Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>