Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Keeping computing compatible

29.09.2008
As distributed computing becomes universal, the programs that make devices work really have to work together. European researchers have gone back to basics to create a development toolkit that guarantees this sort of compatibility.

Early in 2006, an EU-funded research group called SIMS, for Semantic Interfaces for Mobile Services, took on the challenge of how to envision, design and develop the next generation of software to power widely distributed and highly interactive devices.

The result – a suite of tools for speeding the design and validation of software and services that are guaranteed to interact smoothly – is now being applied and tested by a team of developers.

When SIMS-inspired services are widespread, says Richard Sanders, the SIMS project coordinator, devices such as smart phones, PDAs, and computers will interact with each other seamlessly, update themselves automatically, and offer users the ability to implement new services that are guaranteed to work from the start.

... more about:
»PDAs »SIMS »Semantic »compatibility »smart phones

“If you have communicating software and the communication is important, you want to make sure it works when it interacts with other software,” says Sanders. “SIMS provides the tools to check those scenarios and actually guarantees compatibility.”

Autonomous and collaborating components

The SIMS researchers based their approach on two key factors that they felt had previously been neglected.

Communication and computation are becoming increasingly collaborative and, at the same time, the programs and components that make the devices that we rely on to work are becoming increasingly autonomous.

To accomplish a goal as simple as delivering a package, multiple agents using a wide range of fixed and mobile devices must exchange a variety of messages. For the package to get to the right place at the right time, every exchange has to produce the desired result.

So, the software components making all those interfaces work have to be compatible.

Unlike a telephone call, where one device attempts to initiate a particular kind of connection with another, most real-world services now involve many loosely interconnected software components running on a variety of devices initiating complex sequences of contacts and utilising many different messaging modes.

Most developers, notes Sanders, still think in terms of a single client and server, where one component takes the initiative and the other responds. “We find this very limiting,” he says. “We’re used to lots of components whose combined behaviour produces a service, and where many of them can take the initiative.”

Coded for success

To reach their goal, the SIMS researchers had to re-examine the process of service development from the ground up.

“The biggest challenge was to understand the basic concepts and find the right way to explain them to ourselves and others,” says Sanders. “Concepts like what is a service, what is a goal, what is a semantic interface, and how do these relate to software?”

One result of their back-to-basics approach is that the development of a new service starts with a model of what that service should accomplish rather than with computer code.

The model uses semantic interfaces to specify what goals need to be realised and how the components of the system need to behave and interact to bring that about. Semantic interfaces detail, in a highly structured way, what kinds of connections, exchanges and results are meaningful and useful within a particular domain.

Crucially, the ability of components to communicate with and understand each other can be checked within these models, rather than after reams of computer code have been written.

“We can validate that nothing goes bad; that you don’t send me a message that I won’t understand,” says Sanders.

Developers can create computer code to run devices directly from the validated models, code that is guaranteed to work with all the components of the system.

The researchers believe using their approach and tools could head off most of the interaction errors that trip up systems and frustrate users.

In addition, devices could detect when new or improved services become available, and update themselves automatically as they interact without the risk of introducing incompatible software.

Sanders is eager to see SIMS used wherever interactive services and the software that makes them work are being developed. The result he envisages is a dynamic, service-oriented market place that would work far more smoothly and efficiently than today.

“The greatest potential lies in the way it can support a market place with lots of people specifying services and lots of companies making components that implement these services,” says Sanders. “This market place would support the spreading of software in a much more efficient way than you currently see, and without quality and compatibility problems.”

The SIMS project received funding under the ICT theme of the EU’s Sixth Framework Programme for research.

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/90077

Further reports about: PDAs SIMS Semantic compatibility smart phones

More articles from Information Technology:

nachricht New 3-D display takes the eye fatigue out of virtual reality
22.06.2017 | The Optical Society

nachricht Modeling the brain with 'Lego bricks'
19.06.2017 | University of Luxembourg

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>