Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Keeneland Project Deploys New GPU Supercomputing System for the National Science Foundation

Georgia Tech, along with partner research organizations on the Keeneland Project, including the University of Tennessee-Knoxville, the National Institute for Computational Sciences and Oak Ridge National Laboratory, announced today that the project has completed installation and acceptance of the Keeneland Full Scale System (KFS).

This supercomputing system, which is available to the National Science Foundation (NSF) scientific community, is designed to meet the compute-intensive needs of a wide range of applications through the use of NVIDIA GPU technology. In achieving this milestone, KFS is the most powerful GPU supercomputer available for research through NSF’s Extreme Science and Engineering Discovery Environment (XSEDE) program.

“Keeneland provides an important capability for the NSF computational science community,” says Jeffrey Vetter, Principal Investigator and Project Director, with a joint appointment to Georgia Tech's College of Computing and Oak Ridge National Laboratory. “Many users are running production science applications on GPUs with performance that would not be possible on other systems.”

Scientists will be able to use the resource to create breakthroughs in many fields of science. For the past 20 months, the Keeneland Initial Delivery System (KIDS) has been used for research in both computer science and computational science, and has included applications in astronomical sciences, atmospheric sciences, behavioral and neural sciences, biological and critical systems, materials research and mechanical and structural systems, along with many other application areas. Much of the research will continue on KFS.

Keeneland’s early users note how the system’s capabilities have significantly advanced their research application areas.

“The Infiniband communication is now fast enough so that I can run my program on more GPUs to achieve better performance,” says Jens Glaser, a post-doctoral associate in chemical engineering and materials science at the University of Minnesota. Glaser believes his research results demonstrate that the KFS' hardware is a significant step forward in supercomputing.

Astrophysics researcher Jamie Lombardi, an associate professor in the Department of Physics at Allegheny College, says Keeneland is easily the fastest system he has used. Lombardi uses his hydrodynamics code Starsmasher to simulate the collision and merger of two stars. The dynamics of the gas are parallelized on the CPU cores, while the gravity calculations are parallelized on the GPUs.

“Running on one node of KFS is nearly a factor of three faster than running on one node of my local cluster,” says Lombardi. “The availability of such a large number of nodes on KFS makes it possible for me to run higher resolution simulations than I have ever run before.”

The Keeneland Full Scale System is a 615 TFLOPS HP Proliant SL250-based supercomputer with 264 nodes, where each node contains two Intel Sandy Bridge processors, three NVIDIA M2090 GPU accelerators, 32 GB of host memory, and a Mellanox InfiniBand FDR interconnection network. KFS has delivered sustained performance of over a quarter of a PetaFLOP (one quadrillion calculations per second) in initial testing. The system is space efficient in that it occupies about 400 square feet, including the space for in-row cooling and service areas.

During the KFS installation and acceptance testing, the initial delivery system, KIDS, was used to start production capacity for XSEDE users seeking to run their applications on the system and who had received allocations for Keeneland through a peer review process. KIDS was upgraded with newer GPUs and used for software and application development and for pre-production testing of codes that utilize the GPU accelerators in the Keeneland systems. Even before KFS began production, allocation requests for time greater than the total available for its lifecycle had been received from XSEDE application users.

“Our Keeneland Initial Delivery system has hosted over 130 projects and 200 users over the past two years,” says Vetter. “Requests for access to Keeneland have far outstripped the planned resource delivery, sometimes by as much as twice the availability.”

The Keeneland Project is a five-year Track 2D cooperative agreement, which was awarded by NSF under Contract OCI-0910735 in 2009 for the deployment of an innovative high performance computing system to the open science community. The Georgia Institute of Technology, University of Tennessee-Knoxville, the National Institute for Computational Sciences, and Oak Ridge National Laboratory manage the facility, perform education and outreach activities for advanced architectures, develop and deploy software tools for this class of architecture to ensure productivity, and team with early adopters to map their applications to Keeneland architectures.

To learn more about Keeneland or XSEDE, visit or, respectively.

Joshua Preston
Communications Officer
College of Computing at Georgia Tech
jpreston [at] cc [dot] gatech [dot] edu

Joshua Preston | EurekAlert!
Further information:

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>