Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Keeneland Project Deploys New GPU Supercomputing System for the National Science Foundation

15.11.2012
Georgia Tech, along with partner research organizations on the Keeneland Project, including the University of Tennessee-Knoxville, the National Institute for Computational Sciences and Oak Ridge National Laboratory, announced today that the project has completed installation and acceptance of the Keeneland Full Scale System (KFS).

This supercomputing system, which is available to the National Science Foundation (NSF) scientific community, is designed to meet the compute-intensive needs of a wide range of applications through the use of NVIDIA GPU technology. In achieving this milestone, KFS is the most powerful GPU supercomputer available for research through NSF’s Extreme Science and Engineering Discovery Environment (XSEDE) program.

“Keeneland provides an important capability for the NSF computational science community,” says Jeffrey Vetter, Principal Investigator and Project Director, with a joint appointment to Georgia Tech's College of Computing and Oak Ridge National Laboratory. “Many users are running production science applications on GPUs with performance that would not be possible on other systems.”

Scientists will be able to use the resource to create breakthroughs in many fields of science. For the past 20 months, the Keeneland Initial Delivery System (KIDS) has been used for research in both computer science and computational science, and has included applications in astronomical sciences, atmospheric sciences, behavioral and neural sciences, biological and critical systems, materials research and mechanical and structural systems, along with many other application areas. Much of the research will continue on KFS.

Keeneland’s early users note how the system’s capabilities have significantly advanced their research application areas.

“The Infiniband communication is now fast enough so that I can run my program on more GPUs to achieve better performance,” says Jens Glaser, a post-doctoral associate in chemical engineering and materials science at the University of Minnesota. Glaser believes his research results demonstrate that the KFS' hardware is a significant step forward in supercomputing.

Astrophysics researcher Jamie Lombardi, an associate professor in the Department of Physics at Allegheny College, says Keeneland is easily the fastest system he has used. Lombardi uses his hydrodynamics code Starsmasher to simulate the collision and merger of two stars. The dynamics of the gas are parallelized on the CPU cores, while the gravity calculations are parallelized on the GPUs.

“Running on one node of KFS is nearly a factor of three faster than running on one node of my local cluster,” says Lombardi. “The availability of such a large number of nodes on KFS makes it possible for me to run higher resolution simulations than I have ever run before.”

The Keeneland Full Scale System is a 615 TFLOPS HP Proliant SL250-based supercomputer with 264 nodes, where each node contains two Intel Sandy Bridge processors, three NVIDIA M2090 GPU accelerators, 32 GB of host memory, and a Mellanox InfiniBand FDR interconnection network. KFS has delivered sustained performance of over a quarter of a PetaFLOP (one quadrillion calculations per second) in initial testing. The system is space efficient in that it occupies about 400 square feet, including the space for in-row cooling and service areas.

During the KFS installation and acceptance testing, the initial delivery system, KIDS, was used to start production capacity for XSEDE users seeking to run their applications on the system and who had received allocations for Keeneland through a peer review process. KIDS was upgraded with newer GPUs and used for software and application development and for pre-production testing of codes that utilize the GPU accelerators in the Keeneland systems. Even before KFS began production, allocation requests for time greater than the total available for its lifecycle had been received from XSEDE application users.

“Our Keeneland Initial Delivery system has hosted over 130 projects and 200 users over the past two years,” says Vetter. “Requests for access to Keeneland have far outstripped the planned resource delivery, sometimes by as much as twice the availability.”

The Keeneland Project is a five-year Track 2D cooperative agreement, which was awarded by NSF under Contract OCI-0910735 in 2009 for the deployment of an innovative high performance computing system to the open science community. The Georgia Institute of Technology, University of Tennessee-Knoxville, the National Institute for Computational Sciences, and Oak Ridge National Laboratory manage the facility, perform education and outreach activities for advanced architectures, develop and deploy software tools for this class of architecture to ensure productivity, and team with early adopters to map their applications to Keeneland architectures.

To learn more about Keeneland or XSEDE, visit http://keeneland.gatech.edu or https://www.xsede.org/, respectively.

Contacts
Joshua Preston
Communications Officer
College of Computing at Georgia Tech
jpreston [at] cc [dot] gatech [dot] edu

Joshua Preston | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Information Technology:

nachricht Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale
18.01.2017 | The Hebrew University of Jerusalem

nachricht Data analysis optimizes cyber-physical systems in telecommunications and building automation
18.01.2017 | Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>