Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Keeneland Project Deploys New GPU Supercomputing System for the National Science Foundation

15.11.2012
Georgia Tech, along with partner research organizations on the Keeneland Project, including the University of Tennessee-Knoxville, the National Institute for Computational Sciences and Oak Ridge National Laboratory, announced today that the project has completed installation and acceptance of the Keeneland Full Scale System (KFS).

This supercomputing system, which is available to the National Science Foundation (NSF) scientific community, is designed to meet the compute-intensive needs of a wide range of applications through the use of NVIDIA GPU technology. In achieving this milestone, KFS is the most powerful GPU supercomputer available for research through NSF’s Extreme Science and Engineering Discovery Environment (XSEDE) program.

“Keeneland provides an important capability for the NSF computational science community,” says Jeffrey Vetter, Principal Investigator and Project Director, with a joint appointment to Georgia Tech's College of Computing and Oak Ridge National Laboratory. “Many users are running production science applications on GPUs with performance that would not be possible on other systems.”

Scientists will be able to use the resource to create breakthroughs in many fields of science. For the past 20 months, the Keeneland Initial Delivery System (KIDS) has been used for research in both computer science and computational science, and has included applications in astronomical sciences, atmospheric sciences, behavioral and neural sciences, biological and critical systems, materials research and mechanical and structural systems, along with many other application areas. Much of the research will continue on KFS.

Keeneland’s early users note how the system’s capabilities have significantly advanced their research application areas.

“The Infiniband communication is now fast enough so that I can run my program on more GPUs to achieve better performance,” says Jens Glaser, a post-doctoral associate in chemical engineering and materials science at the University of Minnesota. Glaser believes his research results demonstrate that the KFS' hardware is a significant step forward in supercomputing.

Astrophysics researcher Jamie Lombardi, an associate professor in the Department of Physics at Allegheny College, says Keeneland is easily the fastest system he has used. Lombardi uses his hydrodynamics code Starsmasher to simulate the collision and merger of two stars. The dynamics of the gas are parallelized on the CPU cores, while the gravity calculations are parallelized on the GPUs.

“Running on one node of KFS is nearly a factor of three faster than running on one node of my local cluster,” says Lombardi. “The availability of such a large number of nodes on KFS makes it possible for me to run higher resolution simulations than I have ever run before.”

The Keeneland Full Scale System is a 615 TFLOPS HP Proliant SL250-based supercomputer with 264 nodes, where each node contains two Intel Sandy Bridge processors, three NVIDIA M2090 GPU accelerators, 32 GB of host memory, and a Mellanox InfiniBand FDR interconnection network. KFS has delivered sustained performance of over a quarter of a PetaFLOP (one quadrillion calculations per second) in initial testing. The system is space efficient in that it occupies about 400 square feet, including the space for in-row cooling and service areas.

During the KFS installation and acceptance testing, the initial delivery system, KIDS, was used to start production capacity for XSEDE users seeking to run their applications on the system and who had received allocations for Keeneland through a peer review process. KIDS was upgraded with newer GPUs and used for software and application development and for pre-production testing of codes that utilize the GPU accelerators in the Keeneland systems. Even before KFS began production, allocation requests for time greater than the total available for its lifecycle had been received from XSEDE application users.

“Our Keeneland Initial Delivery system has hosted over 130 projects and 200 users over the past two years,” says Vetter. “Requests for access to Keeneland have far outstripped the planned resource delivery, sometimes by as much as twice the availability.”

The Keeneland Project is a five-year Track 2D cooperative agreement, which was awarded by NSF under Contract OCI-0910735 in 2009 for the deployment of an innovative high performance computing system to the open science community. The Georgia Institute of Technology, University of Tennessee-Knoxville, the National Institute for Computational Sciences, and Oak Ridge National Laboratory manage the facility, perform education and outreach activities for advanced architectures, develop and deploy software tools for this class of architecture to ensure productivity, and team with early adopters to map their applications to Keeneland architectures.

To learn more about Keeneland or XSEDE, visit http://keeneland.gatech.edu or https://www.xsede.org/, respectively.

Contacts
Joshua Preston
Communications Officer
College of Computing at Georgia Tech
jpreston [at] cc [dot] gatech [dot] edu

Joshua Preston | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Information Technology:

nachricht Smart Computers
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht AI implications: Engineer's model lays groundwork for machine-learning device
18.08.2017 | Washington University in St. Louis

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>