Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

K computer grabs top spot in Graph 500 "Big Data" supercomputer ranking

26.06.2014

A collaboration from RIKEN, the Tokyo Institute of Technology, and University College Dublin won top place in the June 2014 Graph 500 supercomputer ranking using the K computer, which is located in Kobe, Japan. The results were announced on June 23 at the international conference on high-performance computing (ISC14) being held in Leipzig, Germany.

The Graph 500 ranking is a relatively new benchmark, first issued in 2010, which seeks to gauge the ability of supercomputers on data-intensive loads rather than simple speed, with the goal of improving computing involving complex data problems in five key areas: cybersecurity, medical informatics, data enrichment, social networks, and symbolic networks.


While the TOP500 ranking measures the ability of a computer to solve a system of linear equations with the LINPACK benchmark, in the Graph500 the speed of a breadth-first graph search, measured by number of traversed edges per second (TEPS) is used, with "edges" indicating the connection between two data points. Breadth-first searches, which are commonly used for Big Data applications, involve a substantially larger degree of irregular computations than the LINPACK benchmark.

To conduct the benchmark measurement, Koji Ueno of Tokyo Institute of Technology and RIKEN, along with colleagues, used 65,536 of the K computer’s 88,128 compute nodes, and was able to solve a breadth-first search of an extremely large graph of 1 trillion nodes and 16 trillion edges in 0.98 second. With this achievement it gained the top place with a score of 17,977 gigaTEPS. The K computer was trailed by Sequoia at the Lawrence Livermore Laboratory in the USA, with a score of 16,599 gigaTEPS, and Mira at the Argonne National Laboratory in the USA, with a score of 14,328.

The K computer’s triumph under the new ranking shows that it excels not only at regular parallel computing but also at graph analysis, which relies heavily on irregular computations, and demonstrates the flexibility of K in application to a wide range of applications. According to Kimihiko Hirao, Director of the RIKEN Advanced Institute for Computational Science, “It is also testimony to the talent of the team’s high software development skills which helped them to make optimum use of the K’s powerful hardware.”

“We are delighted,” he adds, “to have won this prize, as it demonstrates the K computer’s usefulness for tackling complex phenomenon taking place in the real world, which has become increasingly key for computers in recent years.”

Two research projects funded by Japan Science and Technology Agency (JST) CREST programs contributed to this achievement: “Advanced Computing and Optimization Infrastructure for Extremely Large-Scale Graphs on Post Peta-Scale Supercomputers” (PI: Prof. Katsuki Fujisawa of Kyushu University and Co-PI: Prof. Toyotaro Suzumura of University College Dublin), which is a project in the research area of Development of System Software Technologies for Post-Peta Scale High Performance Computing (Research Supervisor: Prof. Akinori Yonezawa of RIKEN), and “EBD: Extreme Big Data - Convergence of Big Data and HPC for Yottabyte Processing” (PI: Prof. Satoshi Matsuoka of Tokyo Institute of Technology), which is a project in the Advanced Core Technologies for Big Data Integration area (Research Supervisor: Prof. Masaru Kitsuregawa of National Institute of Informatics).

For more information please contact:

Akihiko Okada
Office for Research Communication
RIKEN Advanced Institute for Computational Science


Jens Wilkinson
RIKEN
Tel: +81-(0)48-462-1225
Email: pr@riken.jp


About RIKEN
RIKEN is Japan's largest research institute for basic and applied research. Over 2500 papers by RIKEN researchers are published every year in leading scientific and technology journals covering a broad spectrum of disciplines including physics, chemistry, biology, engineering, and medical science. RIKEN's research environment and strong emphasis on interdisciplinary collaboration and globalization has earned a worldwide reputation for scientific excellence.
Website: www.riken.jp/en/ Find us on Twitter at @riken_en


About AICS
AICS was established in July 2010 with the objective of establishing the science of forecasting based on computer simulation. To this end, AICS manages the operation of the K computer by maintaining a user-friendly environment and promoting collaborative projects with a focus on the disciplines of computational science and computer science. The K computer was pronounced the most powerful computer in the world in 2011 and has been available for shared use since the autumn of 2012. It is currently being used by researchers from both academia and industry in projects aiming to solve global issues and advance knowledge in fields such as drug development, disaster prevention, new materials and solar energy.

Associated links

gro-pr | Research SEA News
Further information:
http://www.riken.jp/en/
http://www.researchsea.com

Further reports about: Computing Infrastructure LINPACK Laboratory RIKEN Supervisor measurement networks

More articles from Information Technology:

nachricht Information integration and artificial intelligence for better diagnosis and therapy decisions
24.05.2017 | Fraunhofer MEVIS - Institut für Bildgestützte Medizin

nachricht World's thinnest hologram paves path to new 3-D world
18.05.2017 | RMIT University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>