Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

K computer grabs top spot in Graph 500 "Big Data" supercomputer ranking

26.06.2014

A collaboration from RIKEN, the Tokyo Institute of Technology, and University College Dublin won top place in the June 2014 Graph 500 supercomputer ranking using the K computer, which is located in Kobe, Japan. The results were announced on June 23 at the international conference on high-performance computing (ISC14) being held in Leipzig, Germany.

The Graph 500 ranking is a relatively new benchmark, first issued in 2010, which seeks to gauge the ability of supercomputers on data-intensive loads rather than simple speed, with the goal of improving computing involving complex data problems in five key areas: cybersecurity, medical informatics, data enrichment, social networks, and symbolic networks.


While the TOP500 ranking measures the ability of a computer to solve a system of linear equations with the LINPACK benchmark, in the Graph500 the speed of a breadth-first graph search, measured by number of traversed edges per second (TEPS) is used, with "edges" indicating the connection between two data points. Breadth-first searches, which are commonly used for Big Data applications, involve a substantially larger degree of irregular computations than the LINPACK benchmark.

To conduct the benchmark measurement, Koji Ueno of Tokyo Institute of Technology and RIKEN, along with colleagues, used 65,536 of the K computer’s 88,128 compute nodes, and was able to solve a breadth-first search of an extremely large graph of 1 trillion nodes and 16 trillion edges in 0.98 second. With this achievement it gained the top place with a score of 17,977 gigaTEPS. The K computer was trailed by Sequoia at the Lawrence Livermore Laboratory in the USA, with a score of 16,599 gigaTEPS, and Mira at the Argonne National Laboratory in the USA, with a score of 14,328.

The K computer’s triumph under the new ranking shows that it excels not only at regular parallel computing but also at graph analysis, which relies heavily on irregular computations, and demonstrates the flexibility of K in application to a wide range of applications. According to Kimihiko Hirao, Director of the RIKEN Advanced Institute for Computational Science, “It is also testimony to the talent of the team’s high software development skills which helped them to make optimum use of the K’s powerful hardware.”

“We are delighted,” he adds, “to have won this prize, as it demonstrates the K computer’s usefulness for tackling complex phenomenon taking place in the real world, which has become increasingly key for computers in recent years.”

Two research projects funded by Japan Science and Technology Agency (JST) CREST programs contributed to this achievement: “Advanced Computing and Optimization Infrastructure for Extremely Large-Scale Graphs on Post Peta-Scale Supercomputers” (PI: Prof. Katsuki Fujisawa of Kyushu University and Co-PI: Prof. Toyotaro Suzumura of University College Dublin), which is a project in the research area of Development of System Software Technologies for Post-Peta Scale High Performance Computing (Research Supervisor: Prof. Akinori Yonezawa of RIKEN), and “EBD: Extreme Big Data - Convergence of Big Data and HPC for Yottabyte Processing” (PI: Prof. Satoshi Matsuoka of Tokyo Institute of Technology), which is a project in the Advanced Core Technologies for Big Data Integration area (Research Supervisor: Prof. Masaru Kitsuregawa of National Institute of Informatics).

For more information please contact:

Akihiko Okada
Office for Research Communication
RIKEN Advanced Institute for Computational Science


Jens Wilkinson
RIKEN
Tel: +81-(0)48-462-1225
Email: pr@riken.jp


About RIKEN
RIKEN is Japan's largest research institute for basic and applied research. Over 2500 papers by RIKEN researchers are published every year in leading scientific and technology journals covering a broad spectrum of disciplines including physics, chemistry, biology, engineering, and medical science. RIKEN's research environment and strong emphasis on interdisciplinary collaboration and globalization has earned a worldwide reputation for scientific excellence.
Website: www.riken.jp/en/ Find us on Twitter at @riken_en


About AICS
AICS was established in July 2010 with the objective of establishing the science of forecasting based on computer simulation. To this end, AICS manages the operation of the K computer by maintaining a user-friendly environment and promoting collaborative projects with a focus on the disciplines of computational science and computer science. The K computer was pronounced the most powerful computer in the world in 2011 and has been available for shared use since the autumn of 2012. It is currently being used by researchers from both academia and industry in projects aiming to solve global issues and advance knowledge in fields such as drug development, disaster prevention, new materials and solar energy.

Associated links

gro-pr | Research SEA News
Further information:
http://www.riken.jp/en/
http://www.researchsea.com

Further reports about: Computing Infrastructure LINPACK Laboratory RIKEN Supervisor measurement networks

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>