Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

K computer grabs top spot in Graph 500 "Big Data" supercomputer ranking

26.06.2014

A collaboration from RIKEN, the Tokyo Institute of Technology, and University College Dublin won top place in the June 2014 Graph 500 supercomputer ranking using the K computer, which is located in Kobe, Japan. The results were announced on June 23 at the international conference on high-performance computing (ISC14) being held in Leipzig, Germany.

The Graph 500 ranking is a relatively new benchmark, first issued in 2010, which seeks to gauge the ability of supercomputers on data-intensive loads rather than simple speed, with the goal of improving computing involving complex data problems in five key areas: cybersecurity, medical informatics, data enrichment, social networks, and symbolic networks.


While the TOP500 ranking measures the ability of a computer to solve a system of linear equations with the LINPACK benchmark, in the Graph500 the speed of a breadth-first graph search, measured by number of traversed edges per second (TEPS) is used, with "edges" indicating the connection between two data points. Breadth-first searches, which are commonly used for Big Data applications, involve a substantially larger degree of irregular computations than the LINPACK benchmark.

To conduct the benchmark measurement, Koji Ueno of Tokyo Institute of Technology and RIKEN, along with colleagues, used 65,536 of the K computer’s 88,128 compute nodes, and was able to solve a breadth-first search of an extremely large graph of 1 trillion nodes and 16 trillion edges in 0.98 second. With this achievement it gained the top place with a score of 17,977 gigaTEPS. The K computer was trailed by Sequoia at the Lawrence Livermore Laboratory in the USA, with a score of 16,599 gigaTEPS, and Mira at the Argonne National Laboratory in the USA, with a score of 14,328.

The K computer’s triumph under the new ranking shows that it excels not only at regular parallel computing but also at graph analysis, which relies heavily on irregular computations, and demonstrates the flexibility of K in application to a wide range of applications. According to Kimihiko Hirao, Director of the RIKEN Advanced Institute for Computational Science, “It is also testimony to the talent of the team’s high software development skills which helped them to make optimum use of the K’s powerful hardware.”

“We are delighted,” he adds, “to have won this prize, as it demonstrates the K computer’s usefulness for tackling complex phenomenon taking place in the real world, which has become increasingly key for computers in recent years.”

Two research projects funded by Japan Science and Technology Agency (JST) CREST programs contributed to this achievement: “Advanced Computing and Optimization Infrastructure for Extremely Large-Scale Graphs on Post Peta-Scale Supercomputers” (PI: Prof. Katsuki Fujisawa of Kyushu University and Co-PI: Prof. Toyotaro Suzumura of University College Dublin), which is a project in the research area of Development of System Software Technologies for Post-Peta Scale High Performance Computing (Research Supervisor: Prof. Akinori Yonezawa of RIKEN), and “EBD: Extreme Big Data - Convergence of Big Data and HPC for Yottabyte Processing” (PI: Prof. Satoshi Matsuoka of Tokyo Institute of Technology), which is a project in the Advanced Core Technologies for Big Data Integration area (Research Supervisor: Prof. Masaru Kitsuregawa of National Institute of Informatics).

For more information please contact:

Akihiko Okada
Office for Research Communication
RIKEN Advanced Institute for Computational Science


Jens Wilkinson
RIKEN
Tel: +81-(0)48-462-1225
Email: pr@riken.jp


About RIKEN
RIKEN is Japan's largest research institute for basic and applied research. Over 2500 papers by RIKEN researchers are published every year in leading scientific and technology journals covering a broad spectrum of disciplines including physics, chemistry, biology, engineering, and medical science. RIKEN's research environment and strong emphasis on interdisciplinary collaboration and globalization has earned a worldwide reputation for scientific excellence.
Website: www.riken.jp/en/ Find us on Twitter at @riken_en


About AICS
AICS was established in July 2010 with the objective of establishing the science of forecasting based on computer simulation. To this end, AICS manages the operation of the K computer by maintaining a user-friendly environment and promoting collaborative projects with a focus on the disciplines of computational science and computer science. The K computer was pronounced the most powerful computer in the world in 2011 and has been available for shared use since the autumn of 2012. It is currently being used by researchers from both academia and industry in projects aiming to solve global issues and advance knowledge in fields such as drug development, disaster prevention, new materials and solar energy.

Associated links

gro-pr | Research SEA News
Further information:
http://www.riken.jp/en/
http://www.researchsea.com

Further reports about: Computing Infrastructure LINPACK Laboratory RIKEN Supervisor measurement networks

More articles from Information Technology:

nachricht LAMA 2.0 accelerates more than just numerical applications
21.06.2016 | Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI

nachricht Researchers open hairy new chapter in 3-D printing
20.06.2016 | Massachusetts Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unexpected flexibility found in odorant molecules

High resolution rotational spectroscopy reveals an unprecedented number of conformations of an odorant molecule – a new world record!

In a recent publication in the journal Physical Chemistry Chemical Physics, researchers from the Max Planck Institute for the Structure and Dynamics of Matter...

Im Focus: 3-D printing produces cartilage from strands of bioink

Strands of cow cartilage substitute for ink in a 3D bioprinting process that may one day create cartilage patches for worn out joints, according to a team of engineers. "Our goal is to create tissue that can be used to replace large amounts of worn out tissue or design patches," said Ibrahim T. Ozbolat, associate professor of engineering science and mechanics. "Those who have osteoarthritis in their joints suffer a lot. We need a new alternative treatment for this."

Cartilage is a good tissue to target for scale-up bioprinting because it is made up of only one cell type and has no blood vessels within the tissue. It is...

Im Focus: First experimental quantum simulation of particle physics phenomena

Physicists in Innsbruck have realized the first quantum simulation of lattice gauge theories, building a bridge between high-energy theory and atomic physics. In the journal Nature, Rainer Blatt‘s and Peter Zoller’s research teams describe how they simulated the creation of elementary particle pairs out of the vacuum by using a quantum computer.

Elementary particles are the fundamental buildings blocks of matter, and their properties are described by the Standard Model of particle physics. The...

Im Focus: Is There Life On Mars?

Survivalist back from Space - 18 months on the outer skin of the ISS

A year and a half on the outer wall of the International Space Station ISS in altitude of 400 kilometers is a real challenge. Whether a primordial bacterium...

Im Focus: CWRU physicists deploy magnetic vortex to control electron spin

Potential technology for quantum computing, keener sensors

Researchers at Case Western Reserve University have developed a way to swiftly and precisely control electron spins at room temperature.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ERES 2016: The largest conference in the European real estate industry

09.06.2016 | Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

 
Latest News

Four newly-identified genes could improve rice

27.06.2016 | Agricultural and Forestry Science

Scientists begin modeling universe with Einstein's full theory of general relativity

27.06.2016 | Physics and Astronomy

Newly-discovered signal in the cell sets protein pathways to mitochondria

27.06.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>