Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

iPhone the Body Electric: New 'Apps' from the U of Utah

09.10.2009
University of Utah researchers created new iPhone programs – known as applications or “apps” – to help scientists, students, doctors and patients study the human body, evaluate medical problems and analyze other three-dimensional images.

The three iPhone apps are available via Apple Inc.’s online iTunes App Store:

-- ImageVis3D Mobile lets iPhone users easily display, rotate and otherwise manipulate 3-D images of medical CT and MRI scans, and a wide range of scientific images, from insects to molecules to engines. This free app is based on computer software from the university’s Scientific Computing and Imaging (SCI) Institute.

-- AnatomyLab allows students to conduct a “virtual dissection” by providing images of a real human cadaver during 40 separate stages of dissection. Just hit the “View Cadaver” button. The software, which sells for $9.99, was designed by biology Professor-Lecturer Mark Nielsen and two University of Utah students, including his son.

-- My Body, a scaled-down version of AnatomyLab, sells for $1.99 and is intended for the general public, including “anyone curious about what their body looks like,” Nielsen says.

Another iPhone app from the SCI Institute is in development. Named ViSUS, it now allows users of desktop and laptop computers – and soon iPhones – to quickly and easily analyze and edit massive image files containing hundreds of gigabytes of data.

ImageVis3D Mobile and ViSUS “help people visualize and manipulate large amounts of image data,” particularly biomedical images, says Chris Johnson, director of the SCI Institute and a distinguished professor of computer science.

Nielsen says AnatomyLab is meant for students and teachers, but “a lot of medical professionals are buying it because they can show it to their patients on the spot and clarify injuries or problems they are discussing with them about their body.”

Johnson says doctors can use ImageVis3D Mobile the same way, but with images from patients’ own CT or MRI scans.

“We assume the doctor already has looked at and analyzed the image data on a larger display device,” Johnson says. “Now he goes back to the patient and can display that visualization interactively on a mobile device like the iPhone without having to go back to a computer screen somewhere else.”

Visualizing in Three Dimensions

ImageVis3D Mobile is based on similar software for desktop and laptop computers. It performs “3-D volume visualization” or “volume rendering,” which means “it makes realistic 3-D pictures from medical image data and other scientific and engineering data,” Johnson says.

The ability for the public to do 3-D visualization of large data sets is a fairly recent development, he adds. “It was not very long ago you could only do this on high-end graphics workstations,” says Johnson. “We created the software that enabled 3-D visualizations to be done on laptops and desktops – and now even on the iPhone.”

ImageVis3D Mobile became available via Apple’s iPhone App Store in mid-September. More than 500 copies were downloaded in the first 11 days.

The original ImageVis3D was written by Jens Krueger, a German computer scientist and adjunct faculty member at the SCI Institute, and Tom Fogal, a software developer at the institute, as part of a biomedical computing project funded by the National Institutes of Health. The iPhone version then was developed by Krueger, who now is at the German Institute for Artificial Intelligence.

Fogal says the iPhone app was developed “to reach a wider audience. There may be a lot of people who are not computer savvy but love their iPhone, so getting it into the App Store allows it to be seen by a much larger market.”

View a Cadaver – in 40 Layers

AnatomyLab had its roots when Nielsen, who has worked at the university 24 years, coauthored an anatomy textbook. Nielsen and Shawn Miller, a University of Utah Ph.D. student in anthropology, then designed software on DVD named “Real Anatomy” to accompany the text. “It allows you to dissect a cadaver on a computer,” Nielsen says.

That software was based on 40 levels of dissection of a cadaver, starting with skin and proceeding through subcutaneous tissue, nerves, veins, muscles and so on. Nielsen and Miller did the dissection and all the photography.

The publisher of the text and DVD wasn’t interested in an iPhone app, but gave Nielsen permission. So Nielsen asked his son, Scott Nielsen, a physics major at the University of Utah, to write the iPhone code.

“He’s a bright guy, and I said, ‘Hey Scott, have you ever programmed for the iPhone?’ He hadn’t, but within a month he wrote the Anatomy Lab program.”

Since AnatomyLab went on sale in July, about 3,300 copies have been sold.

“It’s aimed at students who want to learn anatomy,” Nielsen says. “There’s no substitute for real dissection, but a lot of students in the undergraduate world don’t have access to cadavers in anatomy lab. So we tried to provide them with a realistic lab setting on their phone.”

MyBody – which Nielsen calls “a watered-down version of AnatomyLab for the general public” – went on sale in August.

Nielsen now is preparing a third iPhone application “to help people learn the muscular system in body.”

Massive Images in the Palm of Your Hand

Meanwhile, the SCI Institute is proceeding with development of an iPhone version of ViSUS. The existing version for work stations, desktops and laptops is designed for easy, quick editing of large-scale photographs such as satellite images and mosaics made of scores to hundreds of smaller photos.

The iPhone app can be used by scientists, doctors, engineers or “anybody who needs to manipulate or view lots of high-resolution images, whether photographs, medical images like CT scans or geographic images like you would find in Google Earth satellite images,” says Johnson.

To understand the software’s capabilities, consider that the best commercial high-definition television has an image measuring 1,080 pixels (picture elements) by 1,920 pixels. By comparison, ViSUS can handle an image measuring 200,000 pixels by 200,000 pixels.

“We are able to view pieces of that interactively on the iPhone,” either looking at the entire image (at lower resolution) or zooming in and looking at parts of the image in high resolution – at a faster speed and with less processing than software such as Google Earth, Johnson says.

The images can be displayed, manipulated and analyzed on a PC or laptop – and soon on an iPhone – even though the image data remain on a server.

“That’s the cool thing,” says Johnson. “You can have the data sitting elsewhere, yet you can still view it, display it and manipulate it on your iPhone,” even though “the data set size can be much, much larger than the memory on the iPhone.”

The original ViSUS software was developed by Valerio Pascucci – a SCI Institute faculty member and associate professor of computer science at the University of Utah – with funding from the U.S. Department of Energy.

The Apple App Store is at http://www.apple.com/iphone/iphone-3gs/app-store.html but iTunes software must be downloaded first to access the store.

Contacts:

-- Chris Johnson, distinguished professor of computer science and director, Scientific Computing and Imaging Institute – office (801) 581-7705, cellular (801) 209-9314, crj@sci.utah.edu

-- Tom Fogal, software developer, Scientific Computing and Imaging Institute – office (801) 585-3950, cellular (603) 953-4813, tfogal@sci.utah.edu

-- Mark Nielsen, professor-lecturer in biology – office (801) 581-3233, cellular (801) 647-1547, marknielsen@bioscience.utah.edu

Lee Siegel | Newswise Science News
Further information:
http://www.utah.edu

More articles from Information Technology:

nachricht Equipping form with function
23.06.2017 | Institute of Science and Technology Austria

nachricht Can we see monkeys from space? Emerging technologies to map biodiversity
23.06.2017 | Forschungsverbund Berlin e.V.

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>