Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Iowa State, Ames Lab researchers preparing for Blue Waters supercomputer

28.04.2010
They can't wait to do computational chemistry at a quadrillion calculations per second.

But it's not all that computing power that's driving three Iowa State University and Ames Laboratory researchers as they develop computational chemistry at the petascale. Driving their project is the ability to run complex calculations and do better science.

"Petascale power is required for accuracy," said Monica Lamm, an Iowa State assistant professor of chemical and biological engineering and associate scientist at the U.S. Department of Energy's Ames Laboratory who studies complex molecular binding. "Now we have to use methods that are less accurate and less reliable."

Theresa Windus, an Iowa State professor of chemistry and an associate of the Ames Laboratory, said higher computing power will make a big difference in her studies of atmospheric particles: "This allows us to get results we've never had before."

The source of the new and improved computing power is Blue Waters, a supercomputer that's being developed as a joint effort of the University of Illinois at Urbana-Champaign, its National Center for Supercomputing Applications, IBM, and the Great Lakes Consortium for Petascale Computation, which includes Iowa State.

Blue Waters is expected to be the most powerful supercomputer in the world for open scientific research when it comes online in 2011. It will be the first system of its kind to sustain one petaflop performance – one quadrillion calculations per second – on a range of science and engineering applications.

Blue Waters is supported by the National Science Foundation and the University of Illinois.

Iowa State researchers Lamm, Windus and Mark Gordon, Distinguished Professor and Frances M. Craig Chair in chemistry, Ames Laboratory senior chemist and director of the lab's Applied Mathematics and Computational Sciences Program, are leading Iowa State's work to develop computational chemistry software that can be scaled up to petascale computing systems. The research team also includes Masha Sosonkina, an adjunct associate professor of computer science, of electrical and computer engineering and an Ames Laboratory scientist; and Brett Bode, the software development manager for the Blue Waters project at the National Center for Supercomputing Applications.

The researchers' work is supported by grants of more than $1.6 million from the National Science Foundation.

The Iowa State researchers are working to scale up two computational chemistry software codes for use on Blue Waters and its thousands of parallel processors and high-speed connections. ("You don't just put a CD into the computer and hit install," Windus said.) One of the codes is called GAMESS and was developed by Gordon's research group at Ames Laboratory and Iowa State; the other is NWChem, for which Windus was the lead developer when she was at the U.S. Department of Energy's Pacific Northwest National Laboratory in Richland, Wash. The computing power of Blue Waters is expected to help the software deliver better, more accurate answers to three specific research problems that have been too computationally demanding to do full-scale calculations with current research tools.

Lamm is studying how dendrimers (large polymers with many branches) bind to ligands (smaller molecules that bind with other molecules to form larger complexes). A better understanding of the binding could have applications in health technologies such as drug delivery and water treatment.

Windus is studying aerosols in the atmosphere and how the tiny particles grow at the molecular level. She said a better understanding of aerosols is important to understanding the chemistry of the atmosphere. She's using NWChem for the research.

Gordon is studying the molecular dynamics of water because many aspects of its behavior aren't very well understood. To do his studies, he's using a computational method that allows researchers to look at a large molecular system by splitting it into fragments. That allows researchers to make quicker calculations while maintaining accurate results. The method is only available on the GAMESS computational chemistry tool developed by Gordon and his research group.

Lamm said she's hoping the Blue Waters project will help the Iowa State researchers move their projects ahead.

"A problem of computational chemistry has been asking what computing power is available and how can we simplify the science for the computer," she said. "Now we have a chance to do our problems the right way."

Monica Lamm | EurekAlert!
Further information:
http://www.iastate.edu

More articles from Information Technology:

nachricht Safe glide at total engine failure with ELA-inside
27.02.2017 | FernUniversität in Hagen

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>