Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Iowa State, Ames Lab researchers preparing for Blue Waters supercomputer

28.04.2010
They can't wait to do computational chemistry at a quadrillion calculations per second.

But it's not all that computing power that's driving three Iowa State University and Ames Laboratory researchers as they develop computational chemistry at the petascale. Driving their project is the ability to run complex calculations and do better science.

"Petascale power is required for accuracy," said Monica Lamm, an Iowa State assistant professor of chemical and biological engineering and associate scientist at the U.S. Department of Energy's Ames Laboratory who studies complex molecular binding. "Now we have to use methods that are less accurate and less reliable."

Theresa Windus, an Iowa State professor of chemistry and an associate of the Ames Laboratory, said higher computing power will make a big difference in her studies of atmospheric particles: "This allows us to get results we've never had before."

The source of the new and improved computing power is Blue Waters, a supercomputer that's being developed as a joint effort of the University of Illinois at Urbana-Champaign, its National Center for Supercomputing Applications, IBM, and the Great Lakes Consortium for Petascale Computation, which includes Iowa State.

Blue Waters is expected to be the most powerful supercomputer in the world for open scientific research when it comes online in 2011. It will be the first system of its kind to sustain one petaflop performance – one quadrillion calculations per second – on a range of science and engineering applications.

Blue Waters is supported by the National Science Foundation and the University of Illinois.

Iowa State researchers Lamm, Windus and Mark Gordon, Distinguished Professor and Frances M. Craig Chair in chemistry, Ames Laboratory senior chemist and director of the lab's Applied Mathematics and Computational Sciences Program, are leading Iowa State's work to develop computational chemistry software that can be scaled up to petascale computing systems. The research team also includes Masha Sosonkina, an adjunct associate professor of computer science, of electrical and computer engineering and an Ames Laboratory scientist; and Brett Bode, the software development manager for the Blue Waters project at the National Center for Supercomputing Applications.

The researchers' work is supported by grants of more than $1.6 million from the National Science Foundation.

The Iowa State researchers are working to scale up two computational chemistry software codes for use on Blue Waters and its thousands of parallel processors and high-speed connections. ("You don't just put a CD into the computer and hit install," Windus said.) One of the codes is called GAMESS and was developed by Gordon's research group at Ames Laboratory and Iowa State; the other is NWChem, for which Windus was the lead developer when she was at the U.S. Department of Energy's Pacific Northwest National Laboratory in Richland, Wash. The computing power of Blue Waters is expected to help the software deliver better, more accurate answers to three specific research problems that have been too computationally demanding to do full-scale calculations with current research tools.

Lamm is studying how dendrimers (large polymers with many branches) bind to ligands (smaller molecules that bind with other molecules to form larger complexes). A better understanding of the binding could have applications in health technologies such as drug delivery and water treatment.

Windus is studying aerosols in the atmosphere and how the tiny particles grow at the molecular level. She said a better understanding of aerosols is important to understanding the chemistry of the atmosphere. She's using NWChem for the research.

Gordon is studying the molecular dynamics of water because many aspects of its behavior aren't very well understood. To do his studies, he's using a computational method that allows researchers to look at a large molecular system by splitting it into fragments. That allows researchers to make quicker calculations while maintaining accurate results. The method is only available on the GAMESS computational chemistry tool developed by Gordon and his research group.

Lamm said she's hoping the Blue Waters project will help the Iowa State researchers move their projects ahead.

"A problem of computational chemistry has been asking what computing power is available and how can we simplify the science for the computer," she said. "Now we have a chance to do our problems the right way."

Monica Lamm | EurekAlert!
Further information:
http://www.iastate.edu

More articles from Information Technology:

nachricht Five developments for improved data exploitation
19.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Smart Manual Workstations Deliver More Flexible Production
04.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>