Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The invisible network

18.11.2008
Shall I make this call with the landline, mobile or VOIP? Laptop or PDA? Let the phone and the network decide for themselves, say European researchers planning a future of seamless communications.

At one time there was no choice. If you wanted to speak to someone you picked up the phone on the desk and called them. Today, you can also use a mobile cellular phone which could be either GSM or 3G.

Or you could use VOIP from your desktop PC to route the call over the internet. You could do the same with your laptop. And your internet connection could use ADSL, cable, wifi, 3G or even wimax. And then there’s your PDA…

We have never had more choice of how to communicate but neither have we had so many head-spinning acronyms. Wouldn’t it be better if we had one mobile device that could find its own way to set up a call from A to B?

That is the vision of E2RII, an EU-funded project that pulled together 32 organisations in 14 countries to plan a future where such things are possible.

“Most users don’t care about the technology, what they care about is communicating,” says project coordinator Dr Didier Bourse of Motorola Labs near Paris. “You may be in different environments – at home, in the office, on a train, and so on – but what you want is to be connected and to enjoy a seamless experience. At the same time, network operators want to make the best of their networks and use them as efficiently as possible.”

Intelligent phones

They call it ‘end-to-end connectivity’, and to achieve it the exchanges, routers and other hardware between A and B must be able to adapt to several different technologies, hence the principle of ‘end-to-end reconfigurability’ (E2R) which gives the project its name.

E2RII was the second phase of a series of projects that began with E2R itself, which ran between 2004 and 2005. The partners exploited concepts of ‘software-defined radio’, where many functions that are normally hard-wired can be done in software, and ‘cognitive radio’ and ‘cognitive networks’, where communication nodes become more and more intelligent and reconfigurable.

“The idea is to guarantee end-to-end connectivity,” says Bourse. “We are looking both at terminals – such as a phone – and networks. Terminals will be more and more intelligent, so one of the key challenges was to define how in future we will split the intelligence and functionality between the network and the terminal. What do you need on the network side to make these different technologies work together and how far can you distribute the intelligence to the edges?”

Communications cube

At present, most of the intelligence lies in the network. As you travel across Europe with your mobile phone, the local network automatically locates you, routes your calls and then hands you over to the neighbouring network. This is known as ubiquitous access.

In the medium future, the watchword is ‘pervasive services’. “You buy your device and you can update the software, like a PC, but over the air,” Bourse says. “The device can evolve to cope with new technologies, so you can access new services. Developers or vendors will be able to modify the communications standards of equipment without having to invest in a new hardware design.”

Further ahead lies ‘dynamic and flexible resource management’. Bourse asks us to picture a cube – the ‘communications cube’ – where one side represents radio frequency, a second side represents the range of radio technologies available and a third side maps all the possible services.

Today’s devices operate at only a few points within the cube. At any one time, your mobile phone will use a given frequency (perhaps 900 or 1800 MHz), a technology (say, GSM) and a service (such as voice or text). In future, Bourse envisages systems that potentially could use the entire volume of the cube, selecting whatever frequency, technology and service is available to get your message across efficiently. And you won’t even know it’s happening.

Influence on standards

Of course, there are many obstacles to overcome first, not least the present rather rigid allocation of radio spectrum. E2RII included telecom regulators amongst its partners, alongside businesses and universities, to ensure that its innovative technical concepts and solutions made regulatory as well as business sense.

There were even partners in India, China and Singapore, to bring in needed skills and help build a wider consensus on the way ahead. The project also worked with similar initiatives in North America and Japan.

The partners have developed many proposals for equipment, network management and applications. They made more than 450 contributions to conferences, journals and workshops and the effects of the project are already being felt through its input into European and worldwide standards. Some reconfigurable products influenced by E2RII thinking are starting to appear.

Although E2RII finished at the end of 2007 its work is now being carried on by a project called E3 – End-to-End Efficiency – which seeks to build on the concept of cognitive radio systems to make the best use of the communications cube. As Bourse says, “The ultimate goal is really to make the system much more efficient.”

E2RII is one of five large integrated projects in the EU’s Wireless World Initiative and was supported by the Sixth Framework Programme for research.

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/90243

More articles from Information Technology:

nachricht Smart Computers
21.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht AI implications: Engineer's model lays groundwork for machine-learning device
18.08.2017 | Washington University in St. Louis

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>