Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The invisible network

Shall I make this call with the landline, mobile or VOIP? Laptop or PDA? Let the phone and the network decide for themselves, say European researchers planning a future of seamless communications.

At one time there was no choice. If you wanted to speak to someone you picked up the phone on the desk and called them. Today, you can also use a mobile cellular phone which could be either GSM or 3G.

Or you could use VOIP from your desktop PC to route the call over the internet. You could do the same with your laptop. And your internet connection could use ADSL, cable, wifi, 3G or even wimax. And then there’s your PDA…

We have never had more choice of how to communicate but neither have we had so many head-spinning acronyms. Wouldn’t it be better if we had one mobile device that could find its own way to set up a call from A to B?

That is the vision of E2RII, an EU-funded project that pulled together 32 organisations in 14 countries to plan a future where such things are possible.

“Most users don’t care about the technology, what they care about is communicating,” says project coordinator Dr Didier Bourse of Motorola Labs near Paris. “You may be in different environments – at home, in the office, on a train, and so on – but what you want is to be connected and to enjoy a seamless experience. At the same time, network operators want to make the best of their networks and use them as efficiently as possible.”

Intelligent phones

They call it ‘end-to-end connectivity’, and to achieve it the exchanges, routers and other hardware between A and B must be able to adapt to several different technologies, hence the principle of ‘end-to-end reconfigurability’ (E2R) which gives the project its name.

E2RII was the second phase of a series of projects that began with E2R itself, which ran between 2004 and 2005. The partners exploited concepts of ‘software-defined radio’, where many functions that are normally hard-wired can be done in software, and ‘cognitive radio’ and ‘cognitive networks’, where communication nodes become more and more intelligent and reconfigurable.

“The idea is to guarantee end-to-end connectivity,” says Bourse. “We are looking both at terminals – such as a phone – and networks. Terminals will be more and more intelligent, so one of the key challenges was to define how in future we will split the intelligence and functionality between the network and the terminal. What do you need on the network side to make these different technologies work together and how far can you distribute the intelligence to the edges?”

Communications cube

At present, most of the intelligence lies in the network. As you travel across Europe with your mobile phone, the local network automatically locates you, routes your calls and then hands you over to the neighbouring network. This is known as ubiquitous access.

In the medium future, the watchword is ‘pervasive services’. “You buy your device and you can update the software, like a PC, but over the air,” Bourse says. “The device can evolve to cope with new technologies, so you can access new services. Developers or vendors will be able to modify the communications standards of equipment without having to invest in a new hardware design.”

Further ahead lies ‘dynamic and flexible resource management’. Bourse asks us to picture a cube – the ‘communications cube’ – where one side represents radio frequency, a second side represents the range of radio technologies available and a third side maps all the possible services.

Today’s devices operate at only a few points within the cube. At any one time, your mobile phone will use a given frequency (perhaps 900 or 1800 MHz), a technology (say, GSM) and a service (such as voice or text). In future, Bourse envisages systems that potentially could use the entire volume of the cube, selecting whatever frequency, technology and service is available to get your message across efficiently. And you won’t even know it’s happening.

Influence on standards

Of course, there are many obstacles to overcome first, not least the present rather rigid allocation of radio spectrum. E2RII included telecom regulators amongst its partners, alongside businesses and universities, to ensure that its innovative technical concepts and solutions made regulatory as well as business sense.

There were even partners in India, China and Singapore, to bring in needed skills and help build a wider consensus on the way ahead. The project also worked with similar initiatives in North America and Japan.

The partners have developed many proposals for equipment, network management and applications. They made more than 450 contributions to conferences, journals and workshops and the effects of the project are already being felt through its input into European and worldwide standards. Some reconfigurable products influenced by E2RII thinking are starting to appear.

Although E2RII finished at the end of 2007 its work is now being carried on by a project called E3 – End-to-End Efficiency – which seeks to build on the concept of cognitive radio systems to make the best use of the communications cube. As Bourse says, “The ultimate goal is really to make the system much more efficient.”

E2RII is one of five large integrated projects in the EU’s Wireless World Initiative and was supported by the Sixth Framework Programme for research.

Christian Nielsen | alfa
Further information:

More articles from Information Technology:

nachricht Fraunhofer FIT joins Facebook's Telecom Infra Project
25.10.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Stanford researchers create new special-purpose computer that may someday save us billions
21.10.2016 | Stanford University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>