Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Internet-of-Things: a simple concept – numerous challenges

26.05.2011
Connecting everyday objects to the internet can be reality soon. The partners of the European FP7 Research Project IoT-A (Internet of Things - Architecture) create an architecture reference model allowing all objects to connect to the Internet, regardless of the wireless technology and eliminating interoperability challenges. The expected benefits are extensive and may result in energy savings, improved healthcare, a reduction of traffic and safer supply chains.
“In our vision, IoT-A will expand the boundaries of today’s internet to encompass the physical world and enable identification, information gathering and understanding”, said Dr. Thorsten Kramp, computer scientist at IBM Research - Zurich. “Three years from now, the foundation will be laid for any object having a sensor to connect to the Internet securely and easily.”

To demonstrate the technology for an open, unified Internet of Things architecture two viable scenarios are used:

• At the in-house hospital of the University of Rome, Italy and at Telefonica’s Living Lab in Granada, Spain, scientists monitor and process patients’ vitals. The data is sent to local hospitals and checked for major physiological changes. Medical assistance will be alerted if deviations are analysed and a course of action becomes necessary.

• To improve customer retention at retailers, the IoT-A project includes research activities to let consumers enjoy a more personalized shopping experience. The Future Retail Center in Regensdorf, a SAP Research Living Lab, offers scientists the possibility to create such an advanced individual experience based on shopping recommendations on smart phones. By connecting the smart phone to wireless sensors attached to products throughout the Future Retail Center store, products are recommended according to the consumer’s preferences, shopping history and a certain price range. The shopping list on the smart phone makes consumers’ navigation through the store more efficient. Product details are also available such as ingredients, nutrition facts ,carbon footprint details, or the production site.

While the concept is simple, its application faces a number of challenges.
Many of today’s devices (from mobile phones to RFID tags) can connect to the Internet. As point-to-point connections and often closed off by firewalls or restricted – like corporate intranets – IoT-A establishes a common ground for sensors, which companies, public entities, and individuals can effortlessly connect to, similar to crowd-sourcing websites.

One of many possible examples is the environmental sensor network in a smart city. Using IoT-A, the sensor network can be used simultaneously by the controlling infrastructure of the smart city, out-of-town environmental agencies, local news agencies, and overseas research institutes. All of them query different subsets of the sensor network’s real-time measurement data, including temperature, rainfall, and humidity.

Another challenge is the ease of use. Configuring objects to connect them to the Internet as well as to each other is highly complex, due to the variety of incompatible wireless technologies. The IoT-A scientist’s aim is to create a homogeneous connection of sensors regardless of their wireless technology, such as Bluetooth, Wifi, WiMAX, or Zigbee. In addition, IBM’s Mote Runner technology makes a new homogeneous run-time and development environment available across a wide diversity of hardware and application domains.

Finally, an open Internet of Things inevitably raises security and privacy issues. IoT-A will take into account control of produced and traceable user data. Hardware and security technology advancements will help avoid the usage of stored data without permission and the tracing of individuals through their sensors.

About IoT-A
IoT-A has a budget of EUR 19 million and is co-funded with EUR 12 million by the European Commission within the 7th Framework Programme. For the project a consortium of 18 European-based corporate research organizations, large research institutes and universities from nine countries is coordinated by VDI/VDE Innovation + Technik GmbH and includes Hitachi Europe Ltd. (UK); NXP Semiconductors (D and B); Siemens AG (D); University of St. Gallen (CH); SAP AG (D); University of Surrey (UK); Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. (D); Commissariat à l’Energie Atomique (F); NEC Europe Ltd. (UK); Telefonica Investigación y Desarrollo SA Unipersonal (E); IBM Research GmbH (CH); Università Sapienza di Roma (I); Consorzio Ferrara Ricerche (I), Creative Systems Engineering (GR); Julius-Maximilian-Universität Würzburg (D); Alcatel-Lucent Bell Labs (F and B).

The research project started in September 2010 and will be completed in 2013. Now first results of “Internet of Things – Architecture” (IoT-A) are announced to be showcased at the IoT-week 2011. Please find further information on the research project IoT-A online

http://www.iot-a.eu/

First results of the project will be shown at the IoT-week 2011 June 6-9 in Barcelona

http://www.iot-week.eu/

Contact:
IoT-A Coordinator
Dr. Sebastian Lange
VDI/VDE Innovation + Technik GmbH
Steinplatz 1
10623 Berlin
Germany
Fon: +49 30 310 078 - 299
Fax: +49 30 310 078 - 225
info@iot-a.eu
http://www.iot-a.eu/public

Wiebke Ehret | VDI/VDE
Further information:
http://www.iot-a.eu/
http://www.iot-week.eu/

More articles from Information Technology:

nachricht Construction of practical quantum computers radically simplified
05.12.2016 | University of Sussex

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>