Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New interactive system detects touch and gestures on any surface

10.10.2012
People can let their fingers - and hands - do the talking with a new touch-activated system that projects onto walls and other surfaces and allows users to interact with their environment and each other.
The system identifies the fingers of a person's hand while touching any plain surface. It also recognizes hand posture and gestures, revealing individual users by their unique traits.

"Imagine having giant iPads everywhere, on any wall in your house or office, every kitchen counter, without using expensive technology," said Niklas Elmqvist, an assistant professor of electrical and computer engineering at Purdue University. "You can use any surface, even a dumb physical surface like wood. You don't need to install expensive LED displays and touch-sensitive screens."

The new "extended multitouch" system allows more than one person to use a surface at the same time and also enables people to use both hands, distinguishing between the right and left hand.

Research indicates the system is 98 percent accurate in determining hand posture, which is critical to recognizing gestures and carrying out commands. The technology has many possible applications, said Karthik Ramani, Purdue's Donald W. Feddersen Professor of Mechanical Engineering.

"Basically, it might be used for any interior surface to interact virtually with a computer," he said. "You could use it for living environments, to turn appliances on, in a design studio to work on a concept or in a laboratory, where a student and instructor interact."

Findings are detailed in a research paper being presented this week during the Association for Computing Machinery Symposium on User Interface Software and Technology (ACM UIST 2012) in Cambridge, Mass. The paper was written by doctoral students Sundar Murugappan and Vinayak, who uses only one name, Elmqvist and Ramani.

The system uses the Microsoft Kinect camera, which senses three-dimensional space.

"We project a computer screen on any surface, just a normal table covered with white paper," Ramani said. "The camera sees where your hands are, which fingers you are pressing on the surface, tracks hand gestures and recognizes whether there is more than one person working at the same time." The Kinect camera senses depth, making it possible to see how far each 3-D pixel is from the camera. The researchers married the camera with a new computer model for the hand.

"So we can isolate different parts of a hand or finger to show how far they are from the surface," Elmqvist said. "We can see which fingers are touching the surface. With this technology, you could potentially call up a menu by positioning your hand just above the surface." That camera coupled with the hand model allows the system to locate the center of each hand, which is necessary for determining gestures and distinguishing between left and right hands.

Researchers explored possible applications, including one that allows the user to draw a sketch with a pen and then modify it with their hands.

"We can detect gestural interactions between more than one hand and more than one user," Ramani said. "You could do precision things, like writing with a pen, with your dominant hand and more general things, such as selecting colors, using the non-dominant hand."

Researchers tested the concept in two user studies, one with 14 volunteers and the other with nine. Findings from one study indicated display features should be no smaller than 18 millimeters, or about an inch, to be efficient.

"While new and more precise cameras will improve accuracy, we have established the necessary hand models and principles for the system," Ramani said.

The other user study showed the system can effectively determine hand posture and whether the right or left hand is being used.

"We wanted to see how accurate we could be while figuring out different configurations, such as touching with all 10 fingers, which hand is being used and so on," Elmqvist said.

That study indicated the system was 98 percent accurate in determining hand posture.

Patents are pending on the concept.

The research has been supported by the National Science Foundation and the Donald W. Feddersen Chaired Professorship at Purdue School of Mechanical Engineering. (A video about the system can be viewed at https://Engineering.Purdue.edu/cdesign/wp/?p=1423).

Writer: Emil Venere, 765-494-3470, venere@purdue.edu

Sources: Niklas Elmqvist, 765 494-0364, elm@purdue.edu
Karthik Ramani, 765-494-5725, ramani@purdue.edu
Related websites:
Niklas Elmqvist: http://engineering.purdue.edu/~elm/
Karthik Ramani: https://engineering.purdue.edu/~ramani
IMAGE CAPTION:
This composite image shows how fingers and hands are computed in a new touch-activated system that projects onto walls and other surfaces and allows people to interact with their environment and each other. (Purdue University image)

A publication-quality image is available at http://news.uns.purdue.edu/images/2012/elmqvist-multitouch.jpg

Emil Venere | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Information Technology:

nachricht Cutting edge research for the industries of tomorrow – DFKI and NICT expand cooperation
21.03.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Molecular motor-powered biocomputers
20.03.2017 | Technische Universität Dresden

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>