Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New interactive system detects touch and gestures on any surface

10.10.2012
People can let their fingers - and hands - do the talking with a new touch-activated system that projects onto walls and other surfaces and allows users to interact with their environment and each other.
The system identifies the fingers of a person's hand while touching any plain surface. It also recognizes hand posture and gestures, revealing individual users by their unique traits.

"Imagine having giant iPads everywhere, on any wall in your house or office, every kitchen counter, without using expensive technology," said Niklas Elmqvist, an assistant professor of electrical and computer engineering at Purdue University. "You can use any surface, even a dumb physical surface like wood. You don't need to install expensive LED displays and touch-sensitive screens."

The new "extended multitouch" system allows more than one person to use a surface at the same time and also enables people to use both hands, distinguishing between the right and left hand.

Research indicates the system is 98 percent accurate in determining hand posture, which is critical to recognizing gestures and carrying out commands. The technology has many possible applications, said Karthik Ramani, Purdue's Donald W. Feddersen Professor of Mechanical Engineering.

"Basically, it might be used for any interior surface to interact virtually with a computer," he said. "You could use it for living environments, to turn appliances on, in a design studio to work on a concept or in a laboratory, where a student and instructor interact."

Findings are detailed in a research paper being presented this week during the Association for Computing Machinery Symposium on User Interface Software and Technology (ACM UIST 2012) in Cambridge, Mass. The paper was written by doctoral students Sundar Murugappan and Vinayak, who uses only one name, Elmqvist and Ramani.

The system uses the Microsoft Kinect camera, which senses three-dimensional space.

"We project a computer screen on any surface, just a normal table covered with white paper," Ramani said. "The camera sees where your hands are, which fingers you are pressing on the surface, tracks hand gestures and recognizes whether there is more than one person working at the same time." The Kinect camera senses depth, making it possible to see how far each 3-D pixel is from the camera. The researchers married the camera with a new computer model for the hand.

"So we can isolate different parts of a hand or finger to show how far they are from the surface," Elmqvist said. "We can see which fingers are touching the surface. With this technology, you could potentially call up a menu by positioning your hand just above the surface." That camera coupled with the hand model allows the system to locate the center of each hand, which is necessary for determining gestures and distinguishing between left and right hands.

Researchers explored possible applications, including one that allows the user to draw a sketch with a pen and then modify it with their hands.

"We can detect gestural interactions between more than one hand and more than one user," Ramani said. "You could do precision things, like writing with a pen, with your dominant hand and more general things, such as selecting colors, using the non-dominant hand."

Researchers tested the concept in two user studies, one with 14 volunteers and the other with nine. Findings from one study indicated display features should be no smaller than 18 millimeters, or about an inch, to be efficient.

"While new and more precise cameras will improve accuracy, we have established the necessary hand models and principles for the system," Ramani said.

The other user study showed the system can effectively determine hand posture and whether the right or left hand is being used.

"We wanted to see how accurate we could be while figuring out different configurations, such as touching with all 10 fingers, which hand is being used and so on," Elmqvist said.

That study indicated the system was 98 percent accurate in determining hand posture.

Patents are pending on the concept.

The research has been supported by the National Science Foundation and the Donald W. Feddersen Chaired Professorship at Purdue School of Mechanical Engineering. (A video about the system can be viewed at https://Engineering.Purdue.edu/cdesign/wp/?p=1423).

Writer: Emil Venere, 765-494-3470, venere@purdue.edu

Sources: Niklas Elmqvist, 765 494-0364, elm@purdue.edu
Karthik Ramani, 765-494-5725, ramani@purdue.edu
Related websites:
Niklas Elmqvist: http://engineering.purdue.edu/~elm/
Karthik Ramani: https://engineering.purdue.edu/~ramani
IMAGE CAPTION:
This composite image shows how fingers and hands are computed in a new touch-activated system that projects onto walls and other surfaces and allows people to interact with their environment and each other. (Purdue University image)

A publication-quality image is available at http://news.uns.purdue.edu/images/2012/elmqvist-multitouch.jpg

Emil Venere | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>