Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Intelligence inside metal components

Whether it's CD packaging, containers or identification cards: RFID tags (Radio Frequency Identification) are increasingly finding their way into everyday life. They make it possible to label objects or goods and identify them automatically by radio frequency.

The appropriate scanner can read and process the data contained in the label. »Smart labels« can be affixed to goods under production conditions of up to 100 degrees Celsius. But at higher temperatures – such as with laser fusion – they fall apart: the metal components are being manufactured out of stainless steel powder, using a laser at temperatures in excess of 1400 degrees Celsius. Such production conditions precluded the use of radio-based identification – until now.

Recently, researchers from the Fraunhofer-Institute for Manufacturing and Advanced Materials IFAM in Bremen developed a new, non-destructive process. They use the »Rapid Manufacturing« method: A machine produces a component based on a three-dimensional CAD model, building it layer-by-layer directly from the computer. The laser melts off the areas of each metal powder layer that are intended to be solid. Next, the building platform is lowered and the process restarts until the component is completed. Fraunhofer scientists can control this process in a manner that allows the RFID to be installed and completely encased by the material.

»This new process finally puts the intelligence into the metal component. You can store critical information in the radio tags, like the serial number or the manufacture date. So, for example, companies now can make their top-grade replacement parts tamper-proof and resistant to fraud,« explains project manager Claus Aumund-Kopp. If someone tries to remove the chip, they will wind up destroying it in the attempt. And soon, it will be possible to do more than just reading the identification code. Conceivably, it might even be possible to store information during the period of usage. Experts also envision the potential of this process as it relates to sensors or actuators: With the aid of temperature or expansion sensors, it may be possible to record data on thermal or mechanical stresses on the components.

In addition, the new Fraunhofer Additive Manufacturing Alliance will present technologies and services along the entire value creation chain. This includes everything from additive manufacturing technologies and tools manufacturing through to tooling, repair and maintenance. Ten institutes have joined together under the aegis of the alliance (

Claus Aumund-Kopp | EurekAlert!
Further information:

More articles from Information Technology:

nachricht Fraunhofer FIT joins Facebook's Telecom Infra Project
25.10.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Stanford researchers create new special-purpose computer that may someday save us billions
21.10.2016 | Stanford University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>