Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Innovative technique can spot errors in key technological systems

27.01.2010
Operators of satellites, weather instruments may receive early alerts

An innovative computational technique that draws on statistics, imaging and other disciplines has the capability to detect errors in sensitive technological systems ranging from satellites to weather instruments.

The patented technique, known as the Intelligent Outlier Detection Algorithm, or IODA, is described this month in the Journal of Atmospheric and Oceanic Technology.

IODA offers the potential to alert operators to faulty readings or other problems associated with failing sensors. If sensors malfunction and begin transmitting bad data, computers programmed with the algorithm could identify the problem and isolate that bad data.

IODA was developed by researchers at the National Center for Atmospheric Research (NCAR) and the University of Colorado at Boulder (CU).

The National Science Foundation (NSF), NCAR's sponsor, funded the research. "This technology will have broad applicability in many new areas," says Steve Nelson, NSF program director for NCAR.

The developers of the algorithm say its principles can eventually be used in a vast range of technological settings, including cars and other transportation systems, power plants, satellites and space exploration, and data from radars and other observing instruments.

"This could, at least in theory, enable operators to keep a system performing even while it's failing," says Andrew Weekley, a software engineer at NCAR who led the algorithm development effort. "When a system starts to fail, it's absolutely critical to be able to control it as long as possible. That can make the difference between disaster or not."

IODA is designed to perform quality control on time series data--that is, data collected over time, such as wind speeds over the course of a month.

The algorithm, an expert system that draws on statistics, graph theory, image processing and decision trees, can be applied in cases where the correct assessment of data is critical, the incoming data are too numerous for a human to easily review, or the consequences of a sensor failure would be significant.

At present the algorithm consists of several thousand lines of a technical computing language known as MATLAB. The researchers may expand and translate it into a computer programming language such as C so it can be used for commercial purposes.

Ensuring the quality of incoming time series data is a priority for virtually any organization involved in complex operations. If sensors begin relaying inaccurate information, it can be highly challenging for personnel or automated systems to separate good data from bad, especially in cases involving enormous amounts of information.

Typically, to identify bad data, complex operations may rely on multiple sensors, as well as algorithms that characterize specific relationships among the data being collected, and identify failures when the data unexpectedly change.

A drawback in most of these algorithms, however, is they are designed for a particular type of time series and can fail catastrophically when applied to different types of data, especially in situations where there are numerous and sometimes subtle errors.

IODA, however, compares incoming data to common patterns of failure--an approach that can be applied broadly because it is independent of a specific sensor or measurement.

Weekley and co-authors took a new approach to the problem when they began developing IODA 10 years ago. Whereas existing methods treat the data as a function of time, Weekley conceived of an algorithm that treats the data as an image.

This approach mimics the way a person might look at a plot of data points to spot an inconsistency.

For example, if a person looked at a line drawn between points on a graph that represented morning temperatures rising from 50 to 70 degrees, and then spotted a place where that smooth line was broken, dipping precipitously because of numerous data points down at 10 degrees, the person would immediately suspect there was a bad sensor reading.

In cases where there are thousands or even millions of data points about temperature or other variables, pinpointing the bad ones can be more difficult.

But Weekley thought that a computer could be programmed to recognize common patterns of failure through image processing techniques.

Then, like a person eyeing data, the computer could identify problems with data points such as jumps and intermittency; view patterns in the data; and determine not only whether a particular datum is bad but also characterize how it is inaccurate.

"Our thought was to organize a sequence of data as an image and apply image processing techniques to identify a failure unambiguously," Weekley says. "We thought that, by using image processing, we could teach the system to detect inconsistencies, somewhat like a person would."

The research team came up with ways of arranging data points in a time series into clusters, both in a domain that represents the data points over time and in another domain known as delay space.

Delay space, which offers another way to detect differences in the data, is a technique that pairs a data point in the time series with the previous value.

Using the clusters from both the time domain and delay space, bad data are separated into their own cluster, clearly distinct from the cluster of accurate data. At the same time, IODA can calculate quality scores indicating if each individual data point is good or bad.

"I would say the approach we report in the paper is a radical departure from the usual techniques found in the time series literature," says Kent Goodrich, a CU mathematician and a co-author of the paper.

"The image processing and other techniques are not new, but the use of these images and techniques together in a time series application is new. IODA is able to characterize good and bad points very well in some commonly encountered situations."

When the research team tested IODA, they found it accurately isolated incorrect data in several cases.

For example, they applied the algorithm to wind readings from anemometers in Alaska that contained faulty errors due to a loose nut, which left the anemometers unable to consistently measure gusts in high-wind situations. The algorithm identified the bad readings, separating them into a series of clusters away from the good data.

"This technique has very broad implications," Weekley says. "Virtually all control systems rely on time series data at some level, and the ability to identify suspect data along with the possible failure is very useful in creating systems that are more robust.

"We think it is a powerful methodology that could be applied to almost all sequences of measurements that vary over time."

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Information Technology:

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

nachricht New standard helps optical trackers follow moving objects precisely
23.11.2016 | National Institute of Standards and Technology (NIST)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>