Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Innovative technique can spot errors in key technological systems

27.01.2010
Operators of satellites, weather instruments may receive early alerts

An innovative computational technique that draws on statistics, imaging and other disciplines has the capability to detect errors in sensitive technological systems ranging from satellites to weather instruments.

The patented technique, known as the Intelligent Outlier Detection Algorithm, or IODA, is described this month in the Journal of Atmospheric and Oceanic Technology.

IODA offers the potential to alert operators to faulty readings or other problems associated with failing sensors. If sensors malfunction and begin transmitting bad data, computers programmed with the algorithm could identify the problem and isolate that bad data.

IODA was developed by researchers at the National Center for Atmospheric Research (NCAR) and the University of Colorado at Boulder (CU).

The National Science Foundation (NSF), NCAR's sponsor, funded the research. "This technology will have broad applicability in many new areas," says Steve Nelson, NSF program director for NCAR.

The developers of the algorithm say its principles can eventually be used in a vast range of technological settings, including cars and other transportation systems, power plants, satellites and space exploration, and data from radars and other observing instruments.

"This could, at least in theory, enable operators to keep a system performing even while it's failing," says Andrew Weekley, a software engineer at NCAR who led the algorithm development effort. "When a system starts to fail, it's absolutely critical to be able to control it as long as possible. That can make the difference between disaster or not."

IODA is designed to perform quality control on time series data--that is, data collected over time, such as wind speeds over the course of a month.

The algorithm, an expert system that draws on statistics, graph theory, image processing and decision trees, can be applied in cases where the correct assessment of data is critical, the incoming data are too numerous for a human to easily review, or the consequences of a sensor failure would be significant.

At present the algorithm consists of several thousand lines of a technical computing language known as MATLAB. The researchers may expand and translate it into a computer programming language such as C so it can be used for commercial purposes.

Ensuring the quality of incoming time series data is a priority for virtually any organization involved in complex operations. If sensors begin relaying inaccurate information, it can be highly challenging for personnel or automated systems to separate good data from bad, especially in cases involving enormous amounts of information.

Typically, to identify bad data, complex operations may rely on multiple sensors, as well as algorithms that characterize specific relationships among the data being collected, and identify failures when the data unexpectedly change.

A drawback in most of these algorithms, however, is they are designed for a particular type of time series and can fail catastrophically when applied to different types of data, especially in situations where there are numerous and sometimes subtle errors.

IODA, however, compares incoming data to common patterns of failure--an approach that can be applied broadly because it is independent of a specific sensor or measurement.

Weekley and co-authors took a new approach to the problem when they began developing IODA 10 years ago. Whereas existing methods treat the data as a function of time, Weekley conceived of an algorithm that treats the data as an image.

This approach mimics the way a person might look at a plot of data points to spot an inconsistency.

For example, if a person looked at a line drawn between points on a graph that represented morning temperatures rising from 50 to 70 degrees, and then spotted a place where that smooth line was broken, dipping precipitously because of numerous data points down at 10 degrees, the person would immediately suspect there was a bad sensor reading.

In cases where there are thousands or even millions of data points about temperature or other variables, pinpointing the bad ones can be more difficult.

But Weekley thought that a computer could be programmed to recognize common patterns of failure through image processing techniques.

Then, like a person eyeing data, the computer could identify problems with data points such as jumps and intermittency; view patterns in the data; and determine not only whether a particular datum is bad but also characterize how it is inaccurate.

"Our thought was to organize a sequence of data as an image and apply image processing techniques to identify a failure unambiguously," Weekley says. "We thought that, by using image processing, we could teach the system to detect inconsistencies, somewhat like a person would."

The research team came up with ways of arranging data points in a time series into clusters, both in a domain that represents the data points over time and in another domain known as delay space.

Delay space, which offers another way to detect differences in the data, is a technique that pairs a data point in the time series with the previous value.

Using the clusters from both the time domain and delay space, bad data are separated into their own cluster, clearly distinct from the cluster of accurate data. At the same time, IODA can calculate quality scores indicating if each individual data point is good or bad.

"I would say the approach we report in the paper is a radical departure from the usual techniques found in the time series literature," says Kent Goodrich, a CU mathematician and a co-author of the paper.

"The image processing and other techniques are not new, but the use of these images and techniques together in a time series application is new. IODA is able to characterize good and bad points very well in some commonly encountered situations."

When the research team tested IODA, they found it accurately isolated incorrect data in several cases.

For example, they applied the algorithm to wind readings from anemometers in Alaska that contained faulty errors due to a loose nut, which left the anemometers unable to consistently measure gusts in high-wind situations. The algorithm identified the bad readings, separating them into a series of clusters away from the good data.

"This technique has very broad implications," Weekley says. "Virtually all control systems rely on time series data at some level, and the ability to identify suspect data along with the possible failure is very useful in creating systems that are more robust.

"We think it is a powerful methodology that could be applied to almost all sequences of measurements that vary over time."

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Information Technology:

nachricht Smart Computers
21.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht AI implications: Engineer's model lays groundwork for machine-learning device
18.08.2017 | Washington University in St. Louis

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>